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Abstract
The dominant (EHCHCCIaNsGUCHONMNOUEIS 2rc based on complex recurrent or

convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
@HSEHBIS:, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art (SIBEBISEOE® of 41.0 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature.

1 Introduction

Recurrent neural networks, long short-term memory [12] and gated recurrent [7]] neural networks
in particular, have been firmly established as state of the art approaches in sequence modeling and
transduction problems such as language modeling and machine translation [29} [2, [5]. Numerous
efforts have since continued to push the boundaries of recurrent language models and encoder-decoder
architectures 31, 121} [13]].

*Equal contribution. Listing order is random. Jakob proposed replacing RNNs with self-attention and started
the effort to evaluate this idea. Ashish, with Illia, designed and implemented the first Transformer models and
has been crucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head
attention and the parameter-free position representation and became the other person involved in nearly every
detail. Niki designed, implemented, tuned and evaluated countless model variants in our original codebase and
tensor2tensor. Llion also experimented with novel model variants, was responsible for our initial codebase, and
efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and
implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively accelerating
our research.

TWork performed while at Google Brain.

#Work performed while at Google Research.
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Recurrent models typically factor computation along the symbol positions of the input and output
sequences. Aligning the positions to steps in computation time, they generate a sequence of hidden
states hy, as a function of the previous hidden state h;_; and the input for position ¢. This inherently
sequential nature precludes parallelization within training examples, which becomes critical at longer
sequence lengths, as memory constraints limit(GHiSHNEECIOsICRampIE® Recent work has achieved
significant improvements in computational efficiency through factorization tricks [18]] and conditional
computation [26]], while also improving model performance in case of the latter. The fundamental
constraint of sequential computation, however, remains.

Attention mechanisms have become an integral part of compelling sequence modeling and transduc-
tion models in various tasks, allowing modeling of dependencies without regard to their distance in
the input or output sequences [2,|16]. In all but a few cases [22], however, such attention mechanisms
are used in conjunction with a recurrent network.

In this work we propose the Transformer, a model architecture eschewing recurrence and instead
relying entirely on an attention mechanism to draw global dependencies between input and output.
The Transformer allows for significantly more parallelization and can reach a new state of the art in
translation quality after being trained for as little as twelve hours on eight P100 GPUs.

2 Background

The goal of reducing sequential computation also forms the foundation of the Extended Neural GPU
[20], ByteNet [ 15] and ConvS2S [8], all of which use convolutional neural networks as basic building
block, computing hidden representations in parallel for all input and output positions. In these models,
the number of operations required to relate signals from two arbitrary input or output positions grows
in the distance between positions, linearly for(ConvS2S and logarithmically for BjfeNEd This makes
it more difficult to learn dependencies between distant positions [[11]. In the Transformer this is
reduced to a constant number of operations, albeit at the cost of reduced effective resolution due
to averaging attention-weighted positions, an effect we counteract with Multi-Head Attention as
described in section

Self-attention, sometimes called intra-attention is an attention mechanism relating different positions
of a single sequence in order to compute a representation of the sequence. Self-attention has been
used successfully in a variety of tasks including reading comprehension, abstractive summarization,
textual entailment and learning task-independent sentence representations [4} 22, 23} 19].

End-to-end memory networks are based on a recurrent attention mechanism instead of sequence-
aligned recurrence and have been shown to perform well on simple-language question answering and
language modeling tasks [28]].

To the best of our knowledge, however, the Transformer is the first transduction model relying
entirely on self-attention to compute representations of its input and output without using sequence-
aligned RNNs or convolution. In the following sections, we will describe the Transformer, motivate
self-attention and discuss its advantages over models such as [[14} [15]] and [8]].

3 Model Architecture
Most competitive neural EEGHCHCCHTaNsGUCHOMMoAeIS) have an encoder-decoder structure [5] [2] 29].

Here, the encoder maps an input sequence of symbol representations (x1, ..., 2, ) to a sequence
of continuous representations z = (z1, ..., 2,). Given z, the decoder then generates an output
sequence (Y1, ..., Y ) Of symbols one element at a time. At each step the model is @iOHCOICISING
[9l], consuming the previously generated symbols as additional input when generating the next.

The Transformer follows this overall architecture using stacked self-attention and point-wise, fully
connected layers for both the encoder and decoder, shown in the left and right halves of Figure [T}
respectively.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of NV = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
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Figure 1: The Transformer - model architecture.

wise fully connected feed-forward network. We employ a residual connection [10] around each of
the two sub-layers, followed by layer normalization [[1]. That is, the output of each sub-layer is
LayerNorm(z + (STBIESCHER) , Where GHBIEFERER) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the EiESHGNE
@B produce outputs of dimension dmege; = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This

masking, combined with fact that the @ifillChbeadnEslclonscHoyIoncIPosINom cnsures that the

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a EGilipatbniymuneton of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure ). The input consists of

(queries and keys of dimension dyg and values of dimension'dy. We compute the @GHEPIOATEE of (he
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Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

query with all keys, divide each by /d}, and apply a @BllilllaR function to obtain the weights on the
values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix (. The keys and values are also packed together into matrices K and V. We compute
the matrix of outputs as:

QK"
ven

The two most commonly used attention functions are (@ HGilNcIacnon (2], and @SEPSIHCHERNER
_ Dot-product attention is identical to our algorithm, except for the EENEHAGIOnN
of —=. CEEIENEESHEen computes the CORPANBININREHSH using a feed-forward network with

k
a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dj, the two mechanisms perform similarly, @EGINCIREHEON ou tperforms
dot product attention without scaling for larger values of dj, [3]. We suspect that for large values of
dy., the (OHPIOENEE) orow large in magnitude, pushing the SHllE function into regions where it has

To counteract this effect, we scale the (0SS by \/}Tk'

Attention(Q, K, V') = ol W (1)

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dj,0qe1-dimensional keys, values and queries,
we found it beneficial to (IICAHNIPIOIEED the queries, keys and values h times with different, (SEiieE)
(REAPIGIESHRES to ()., dx. and d, dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding d,,-dimensional

output values. These are EHlGaCHaICOIANUIONCCIICaIPIojeoied resulting in the final values, as

depicted in Figure[2]

Multi-head attention allows the model to jointly attend to information from different (EiCSCIANHON
@UBSPARED 2t different positions. With a single attention head, averaging inhibits this.

*To illustrate why the (SHHOENEE cct large, assume that the components of ¢ and & are independent random
variables with mean 0 and variance 1. Then their dot product, ¢ - k£ = Zfi 1 Qiki, has mean 0 and variance dj.



MultiHead(Q, K, V) = Concat(heady, ..., head, )W
where head; = Attention(QW 2, KW/, VIv))

Where the projections are (HNSISHMEINGED 1V © € Rmwe X WK ¢ R xdi [V ¢ Relmowixdy
and WO ¢ RMv X dmoae |

In this work we employ ((IEHSIDRIEIENESHEORIENEE® or heads. For each of these we use

Due to the (EllCCdIdiNCHSiOMoNcacnean the total computational cost
is similar to that of single-head attention with full dimensionality.

3.2.3 Applications of Attention in our Model

The Transformer uses multi-head attention in three different ways:

e In "encoder-decoder attention" layers, the queries come from the previous decoder layer,
and the memory keys and values come from the output of the encoder. This allows every
position in the decoder to attend over all positions in the input sequence. This mimics the
typical encoder-decoder attention mechanisms in sequence-to-sequence models such as
(314121 18].

e The encoder contains self-attention layers. In a self-attention layer all of the keys, values
and queries come from the same place, in this case, the output of the previous layer in the
encoder. Each position in the encoder can attend to all positions in the previous layer of the
encoder.

o Similarly, self-attention layers in the decoder allow each position in the decoder to attend to
all positions in the decoder up to and including that position. We need to prevent leftward
information flow in the decoder to preserve the @lliORICEIessINE property. We implement this
inside of scaled dot-product attention by masking out (setting to —oo) all values in the input
of the (il which correspond to illegal connections. See Figure[2]

3.3 Position-wise Feed-Forward Networks

In addition to attention sub-layers, each of the layers in our encoder and decoder contains a fully
connected feed-forward network, which is applied to each position separately and identically. This
consists of two linear transformations with a ReLU activation in between.

FFN(z) = max(0, W1 + by )Wa + b 2)

While the linear transformations are the same across different positions, they use different parameters
from layer to layer. Another way of describing this is as two convolutions with ((ETHCHEES 1.
The dimensionality of input and output is dmeder = 512, and the inner-layer has dimensionality
dry = 2048.

3.4 Embeddings and SSiaD
Similarly to other (EiCHCCIansaucHOnpNodeIs we use learned embeddings to convert the input

tokens and output tokens to vectors of dimension dy,0qe. We also use the usual learned linear transfor-
mation and G function to convert the decoder output to predicted next-token probabilities. In
our model, we share the same weight matrix between the two EiiBCUGINEIENER 2nd the pre SOTED
linear transformation, similar to [24]). In the EHiBSOGMENEYEE® we multiply those weights by v/dmodel-

3.5 Positional Encoding

Since our model contains no recurrence and no convolution, in order for the model to make use of the
order of the sequence, we must inject some information about the relative or absolute position of the
tokens in the sequence. To this end, we add "positional encodings" to the input embeddings at the



Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, k is the (GSHigH

@8 of convolutions and r the size of the neighborhood in (ESifCiCUCHEaUCHUOn

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n?-d) o)

Recurrent O(n - d?) O(n) O(n)

Convolutional Ok -n-d?) O(logn(n))

o(1)
Self-Attention (restricted) O(r-n-d) o(1) O(n/r)

bottoms of the encoder and decoder stacks. The positional encodings have the same dimension dyyodel
as the embeddings, so that the two can be summed. There are many choices of positional encodings,
learned and fixed [8§].

In this work, we use sine and cosine functions of different frequencies:

PE(pos,2i) = Sin(p05/100002i/dmodcl)
PE(pos,2i+1) = COS(pOS/lOOOOzi/dmndel)

where pos is the position and : is the dimension. That is, each dimension of the positional encoding
corresponds to a (@il The wavelengths form a We
chose this function because we hypothesized it would allow the model to easily learn to attend by

relative positions, since for any fixed offset ., (il RBENEHESCHICOISIIIHCANHCHONGD

We also experimented with using (Eicaiposinonacmbeaames (8] instead, and found that the two
versions produced nearly identical results (see Table [3]row (E)). We chose the (il @i version
because it may allow the model to

4 Why Self-Attention

In this section we compare various aspects of self-attention layers to the recurrent and convolu-
tional layers commonly used for mapping one

(21, ...,zp) to another sequence of equal length (21, ..., 2,), with z;,z; € R%, such as a hidden
layer in a typical sequence transduction encoder or decoder. Motivating our use of self-attention we
consider three desiderata.

One is the total computational complexity per layer. Another is the amount of computation that can
be parallelized, as measured by the minimum number of sequential operations required.

The third is the path length between long-range dependencies in the network. Learning long-range
dependencies is a key challenge in many sequence transduction tasks. One key factor affecting the
ability to learn such dependencies is the length of the paths forward and backward signals have to
traverse in the network. The shorter these paths between any combination of positions in the input
and output sequences, the easier it is to learn long-range dependencies [11]]. Hence we also compare
the maximum path length between any two input and output positions in networks composed of the
different layer types.

As noted in Table[T] a self-attention layer connects all positions with a constant number of sequentially
executed operations, whereas a recurrent layer requires (O(n) sequential operations. In terms of
computational complexity, self-attention layers are faster than recurrent layers when the sequence
length n is smaller than the representation dimensionality d, which is most often the case with
sentence representations used by state-of-the-art models in machine translations, such as (HGIGEpICES
and (BYEEPA [25]] representations. To improve computational performance for tasks involving
very long sequences, self-attention could be restricted to considering only a iEISHBOTNOOUIONSIZEHD i



the input sequence centered around the respective output position. This would increase the maximum
path length to (G We plan to investigate this approach further in future work.

A single convolutional layer with kernel width £ < n does not connect all pairs of input and output
positions. Doing so requires a stack of O(n/k) convolutional layers in the case of contiguous kernels,
or (@NBRMED in the case of @IEEAISSRVEINESHS 5], increasing the length of the longest paths
between any two positions in the network. Convolutional layers are generally more expensive than
recurrent layers, by a factor of k. (SEiiabICIconVoIIEonS (6], however, decrease the complexity
considerably, to O(k - n - d + n - d*). Even with k = n, however, the complexity of a separable
convolution is equal to the combination of a self-attention layer and a point-wise feed-forward layer,
the approach we take in our model.

As side benefit, self-attention could yield more interpretable models. We inspect attention distributions
from our models and present and discuss examples in the appendix. Not only do individual attention
heads clearly learn to perform different tasks, many appear to exhibit behavior related to the EillGcHe

EISETERHERIEND of the scncnces.

5 Training
This section describes the training regime for our models.

5.1 Training Data and Batching

We trained on the standard WMT 2014 English-German dataset consisting of about 4.5 million
sentence pairs. Sentences were encoded using (GJiiEEpaM encoding [3]], which has a shared source-
target vocabulary of about 37000 tokens. For English-French, we used the significantly larger WMT
2014 English-French dataset consisting of 36M sentences and split tokens into a 32000 (HSIIEPIEES
vocabulary [31]]. Sentence pairs were batched together by approximate sequence length. Each training
batch contained a set of sentence pairs containing approximately 25000 source tokens and 25000
target tokens.

5.2 Hardware and Schedule

We trained our models on one machine with 8 NVIDIA P100 GPUs. For our base models using
the hyperparameters described throughout the paper, each training step took about 0.4 seconds. We
trained the base models for a total of 100,000 steps or 12 hours. For our big models,(described on the
bottom line of table3)), step time was 1.0 seconds. The big models were trained for 300,000 steps
(3.5 days).

5.3 Optimizer
We used the Adam optimizer [17] with 8; = 0.9, 32 = 0.98 and € = 10~°. We varied the learning
rate over the course of training, according to the formula:

lrate = d ;%5 - min(step_num™°®, step_num - warmup_steps?) 3)

This corresponds to increasing the learning rate linearly for the first warmup_steps training steps,
and decreasing it thereafter proportionally to the inverse square root of the step number. We used
warmup_steps = 4000.

5.4 Regularization

We employ three types of regularization during training:

Residual Dropout We apply dropout to the output of each sub-layer, before it is added to the
sub-layer input and normalized. In addition, we apply (PO IORICISNMSIONICICHIDEUUINESIANUITHG)
(COSECHANSHEREES in both the encoder and decoder stacks. For the base model, we use a rate of
Pirop = 0.1.



Table 2: The Transformer achieves better (BIIEBIBEBIS: than previous state-of-the-art models on the
English-to-German and English-to-French (iEiSICSIZONED tests at a fraction of the training cost.

del BLEU Training Cost (FHORD
Mode EN-DE EN-FR EN-DE EN-FR
ByteNet) [ 15] 23.75
Deep-Att + PosUnk [32] 39.2 1.0-10%
GNMT + RL [31] 24.6 39.92 2.3-101°  1.4.10%
ConvS2S [8] 25.16 40.46 9.6-10® 1.5-10%
MoE [26]] 26.03  40.56 2.0-10* 1.2.10%
Deep-Att + PosUnk (ESSHIBIS 32 404 8.0-10%
GNMT + RL (EHSEHBIe (31 2630  41.16 1.8-10%°  1.1-10*
ConVS2S_[8] 26.36 41.29 7.7-101  1.2.10%!
Transformer (base model) 27.3 38.1 3.3.10'8
Transformer (big) 28.4 41.0 2.3-10"

Label Smoothing During training, we employed label smoothing of value ¢;; = 0.1 [30]. This

GEESEEED s the model learns to be more unsure, but improves accuracy and (BEEUIESS®

6 Results

6.1 Machine Translation

On the WMT 2014 English-to-German translation task, the big transformer model (Transformer (big)
in Table 2) outperforms the best previously reported models (including (i§SHiBles) by more than 2.0
BLEU, establishing a new state-of-the-art (BINEBISEOI® of 28.4. The configuration of this model is
listed in the bottom line of Table 3] Training took 3.5 days on 8 P100 GPUs. Even our base model
surpasses all previously published models and EHESHBIBS, at a fraction of the training cost of any of
the competitive models.

On the WMT 2014 English-to-French translation task, our big model achieves a (BIIEBISEOE® of 41.0,
outperforming all of the previously published single models, at less than 1/4 the training cost of the
previous state-of-the-art model. The Transformer (big) model trained for English-to-French used
dropout rate Py, = 0.1, instead of 0.3.

For the base models, we used a single model obtained by averaging the last 5 checkpoints, which
were written at 10-minute intervals. For the big models, we averaged the last 20 checkpoints. We
used beam search with a beam size of 4 and (EHEINIDCHAINICIERO0) [31]. These hyperparameters
were chosen after experimentation on the ((EiGlopmengeed We set the maximum output length during
inference to input length + 50, but terminate early when possible [31].

Table [2] summarizes our results and compares our translation quality and training costs to other model
architectures from the literature. We estimate the number of floating point operations used to train a
model by multiplying the training time, the number of GPUs used, and an estimate of the sustained
single-precision floating-point capacity of each GPU El

6.2 Model Variations

To evaluate the importance of different components of the Transformer, we varied our base model
in different ways, measuring the change in performance on English-to-German translation on the

(@SEIGPHCHISED (WSSO We used beam search as described in the previous section, but no
EHEERPOIIESIENS Ve present these results in Table[3]

In Table[3rows (A), we vary the number of attention heads and the attention key and value dimensions,
keeping the amount of computation constant, as described in Section [3.2.2] While single-head
attention is 0.9 BLEU worse than the best setting, quality also drops off with too many heads.

We used values of 2.8, 3.7, 6.0 and 9.5 (il for K80, K40, M40 and P100, respectively.



Table 3: Variations on the Transformer architecture. Unlisted values are identical to those of the base

model. All metrics are on the English-to-German translation ((ENCIOpRchuses GENSIESRZUB Listed

perplexities are per-wordpiece, according to our (GjiEapam cncoding, and should not be compared to
per-word perplexities.

train | PPL  BLEU params
N dmodel dse h dy, d, Pd?“op €ls steps | (dev) (dev) %106

base | 6 512 2048 8 64 64 0.1 0.1 100K | 4.92 25.8 65
1 512 512 5.29 24.9
(A) 4 128 128 5.00 25.5
16 32 32 491 25.8
32 16 16 5.01 254

16 5.16 25.1 58

(B) 32 500 254 60

2 6.11 23.7 36

4 5.19 25.3 50

8 4.88 25.5 80

© 256 32 32 5.75 24.5 28

1024 128 128 4.66 26.0 168

1024 5.12 25.4 53

4096 4.75 26.2 90
0.0 5.77 24.6
0.2 4.95 25.5
(D) 0.0 467 253
0.2 5.47 25.7
(B) positional embedding instead of iSO 492 257

big | 6 1024 4096 16 03 300K | 433 264 213

In Table 3]rows (B), we observe that reducing the attention key size dj, hurts model quality. This
suggests that determining compatibility is not easy and that a more sophisticated ESipanDIIND
@@BHSH than dot product may be beneficial. We further observe in rows (C) and (D) that, as expected,
bigger models are better, and dropout is very helpful in avoiding over-fitting. In row (E) we replace our

@SS | positional encoding with (Eiiicaiposionayembeadings) (3], and observe nearly identical

results to the base model.

7 Conclusion

In this work, we presented the Transformer, the first sequence transduction model based entirely on
attention, replacing the recurrent layers most commonly used in‘encoder-decoder architectures with
multi-headed self-attention.

For translation tasks, the Transformer can be trained significantly faster than architectures based
on recurrent or convolutional layers. On both WMT 2014 English-to-German and WMT 2014
English-to-French translation tasks, we achieve a new state of the art. In the former task our best
model outperforms even all previously reported EHSCHIBISS -

We are excited about the future of attention-based models and plan to apply them to other tasks. We
plan to extend the Transformer to problems involving input and output modalities other than text and
to investigate local, restricted attention mechanisms to efficiently handle large inputs and outputs
such as images, audio and video. Making generation less sequential is another research goals of ours.

The code we used to train and evaluate our models is available at https://github.com/
tensorflow/tensor2tensor.

Acknowledgements We are grateful to Nal Kalchbrenner and Stephan Gouws for their fruitful
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