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Abstract

Over the last decades, developing more powerful neural architectures and simul-
taneously designing optimization algorithms to effectively train them have been
the core of research efforts to enhance the capability of machine learning models.
Despite the recent progresses, particularly in developing Language Models (LMs),
there are fundamental challenges and unanswered questions about how such models
can continually learn/memorize, self-improved, and find “effective solutions,”. In
this paper, we present a new learning paradigm, called Nested Learning (NL), that
coherently represents a model with a set of nested, multi-level, and/or parallel
optimization problems, each of which with its own “context flow”. NL reveals
that existing deep learning methods learns from data through compressing their
own context flow, and explain how in-context learning emerges in large models.
NL suggests a path (a new dimension to deep learning) to design more expressive
learning algorithms with more “levels”, resulting in higher-order in-context learn-
ing abilities. In addition to its neuroscientifically plausible and mathematically
white-box nature, we advocate for its importance by presenting three core contribu-
tions: (1) Deep Optimizers: Based on NL, we show that well-known gradient-based
optimizers (e.g., Adam, SGD with Momentum, etc.) are in fact associative memory
modules that aim to compress the gradients with gradient descent. Building on this
insight, we present a set of more expressive optimizers with deep memory and/or
more powerful learning rules; (2) Self-Modifying Titans: Taking advantage of NL’s
insights on learning algorithms, we present a novel sequence model that learns
how to modify itself by learning its own update algorithm; and (3) Continuum
Memory System: We present a new formulation for memory system that general-
izes the traditional viewpoint of “long-term/short-term memory”. Combining our
self-modifying sequence model with the continuum memory system, we present a
learning module, called HOPE, showing promising results in language modeling,
continual learning, and long-context reasoning tasks.

1 Introduction

This version of the paper has been extensively summarized to fit the page limit of NeurIPS camera
ready, and some materials, experiments, discussions, and methods are moved to appendix, which
might make some parts hard to follow or cause inconsistencies. To avoid such cases, please read our
arXiv version instead [1] (will be available on November 13).
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Figure 1: The uniform and reusable structure as well as multi time scale update in the brain are the
key components to unlock the continual learning in humans. Nested Learning (NL) allows for multi
time-scale update for each component of the brain, while showing that well-known architectures such
as Transformers are in fact linear layers with different frequency updates.

For decades, AI research has focused on designing machine learning algorithms that learn from
data [2–5] or experience [6–8]; often by optimizing an objective L(θ) over parameters θ ∈ Θ with
gradient-based methods. While traditional machine learning techniques required careful engineering
and domain expertise to design feature extractors, limiting their ability to directly process and learn
from natural data [9], deep representation learning offered a fully automated alternative to discover
the representations needed for the task. Thereafter, deep learning has been an inseparable part of the
large-scale computational models with seminal success in chemistry and biology [10], games [11, 12],
computer vision [13, 14], and multimodal and natural language understanding [15–17].

Stacking of multiple layers, as it is done in deep learning models, provides the models with larger
capacity, better expressive power in representing complex features, and more internal computations
(e.g., #FLOPS) [18–20], all of which are critical and desirable characteristics for static tasks that
require in-distribution predictions over a previously fixed set. This deep design, however, is not
a universal solution to all the challenges and cannot help the expressive power of the models in
multiple aspects, for example: (i) The computational depth of deep models might not change with
more layers [21, 22], leaving their ability to implement complex algorithms untouched compared
to traditional shallow approaches [23]; (ii) The capacity of some class of parameters might show
marginal improvement with increasing the depth/width of the model [24]; (iii) The training process
might converge to a suboptimal solution, mainly due to the suboptimal choice of the optimizer or its
hyperparameters; and (iv) The model’s ability to fast adapt to a new task, continually learn, and/or
generalize to out-of-distribution data might not changed with stacking more layers and requires more
careful designs.

The core part of the efforts to overcome the above challenges and to enhance the capability of
deep learning models concentrate on: (1) developing more expressive class of parameters (i.e.,
neural architectures) [13, 25–28]; (2) introducing objectives that can better model the tasks [29–
32]; (3) designing more efficient/effective optimization algorithms to find better solutions or with
more resilience to forgetting [33–36]; and (4) scaling the model size to enhance its expressivity,
when the “right” choice of architecture, objective, and optimization algorithms are made [24, 37, 38].
Collectively, these advancements and new findings on scaling patterns of deep models have established
the foundations upon which Large Language Models (LLMs) have been built.

The development of LLMs marks a pivotal milestone in deep learning research: a paradigm shift from
task-specific models to more general-purpose systems with various emergent capabilities as a result
of scaling the “right” architectures [38, 39]. Despite all their success and remarkable capabilities in
diverse sets of tasks [15, 40, 41], LLMs are largely static after their initial deployment phase, meaning
that they successfully perform tasks learned during pre- or post-training, but are unable to continually
acquire new capabilities beyond their immediate context. The only adaptable component of LLMs
is their in-context learning ability–a (known to be emergent) characteristic of LLMs that enables
fast adaption to the context and so perform zero- or few-shot tasks [38]. Beyond in-context learning,
recent efforts to overcome the static nature of LLMs either are computationally expensive, require
external components, lack generalization, and/or might suffer from catastrophic forgetting [42–44],
which has led researchers to question if there is a need to revisit how to design machine learning
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models and if a new learning paradigm beyond stacking of layers is required to unleash the capabilities
of LLMs in continual setups.

Current Models only Experience the Immediate Present. As an analogy and to better illustrate the
static nature of LLMs, we use the example of anterograde amnesia–a neurological condition where a
person cannot form new long-term memories after the onset of the disorder, while existing memories
remain intact [45]. This condition limits the person’s knowledge and experiences to a short window
of present and long past–before the onset of the disorder–which results in continuously experiencing
the immediate present as if it were always new. The memory processing system of current LLMs
suffer from a similar pattern. Their knowledge is limited to either, the immediate context that fits into
their context window, or the knowledge in MLP layers that stores long-past, before the onset of “end
of pre-training.” This analogy, has motivated us to take inspiration from neurophysiology literature
and how brain consolidate its short-term memories:

1.1 Human Brain Perspective and Neurophysiological Motivation

Human brain is highly efficient and effective when it comes to continual learning (a.k.a. effective
context management), which is often attributed to neuroplasticity—the brain’s remarkable capacity
to change itself in response to new experiences, memories, learning, and even damage [46, 47].
Recent studies support that the formation of Long-term memory involves at least two distinct but
complementary consolidation processes [48–50]: (1) A rapid “online” consolidation (also known as
synaptic consolidation) phase occurs immediately or soon after learning, even during wakefulness.
This is when new and initially fragile memory traces are stabilized and begin transferring from
short-term to long-term storage; (2) An “offline” consolidation (also known as systems consolidation)
process repeats the replay of the recently encoded patterns—during sharp-wave ripples (SWRs) in
the hippocampus, coordinated with cortical sleep spindles and slow oscillations—strengthens and
reorganizes the memory and supports transfer to cortical sites [51–53].

Coming back to the analogy of anterograde amnesia, evidence indicates that the condition can impact
both stages, but especially the online consolidation phase, mainly due to the fact that hippocampus is
the gateway for encoding new declarative memories, and so its damage means new information never
will be stored in long-term memory. As mentioned above, the design of LLMs, and more specifically
Transformer-based backbones, suffers from a similar condition after the pre-training phase. That
is, the information provided in the context, never impacts the long-term memory parameters (e.g.,
feedforward layers), and so the model is not capable of acquiring new knowledge or skill, unless
the information is still stored in the short-term memory (e.g., attention). To this end, although the
second stage is equally, or even more, crucial for the consolidation of memories, and its absence can
damage the process and might cause loss of memory [54, 55], in this work, we focus on the first
stage: memory consolidation as an online process. We provide additional discussion on human brain
perspective and its connection to NL in Appendix A.

Notations. We let x ∈ RN×din be the input, Mt represent the state of memory/model M at time t,
K be the keys, V be the values, and Q be the query matrices. We use bold lowercase letters with
subscript t to refer to the vector corresponds to the input t (i.e., kt,vt, and qt). We further refer to
the distribution of any entities f as p(f). Through the paper, we use simple MLPs with LM ≥ 1
layers and residual connection as the architecture of the memory module M(·). When it is needed,
we parameterized the memory module with θM ⊇ {W1,W2, . . . ,WLM}, which at least includes
the parameters of linear layers in the MLP. We use superscript with parenthesis to refer to parameters
in different levels of nested learning (different update frequency): i.e., W (ℓ).

2 Nested Learning

This section discusses the motivations, formal definitions, and general high-level implications of
Nested Learning (NL). We start with a formulation of associative memory and then by using step-
by-step examples, we build the intuition behind architecture decomposition and its connection to
modeling a neural network as an integrated system of optimization problems. We aim to first show
how existing methods and concepts in deep learning fall under the NL paradigm and then we present
new formulations that go beyond traditional methods and/or provide insights on how to improve
existing algorithms and designs.
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Figure 2: Nested Learning Paradigm that represent a machine learning model and its training
procedure as a set of nested optimization problems. (Left) An example of Hybrid architecture. While
deep learning perspective, as the flattened image of NL, does not provide insight about the depth of
computation in the blocks, NL transparently represent all the inner gradient flows. (Right) A Neural
Learning Module: A computational model that learns how to compress its own context flow. For
example, the first level corresponds to the model’s the most outer-loop training, often refer to as
“pre-training” step.

2.1 Associative Memory

Associative memory—the ability to form and retrieve connections between events—is a fundamental
mental process and is an inseparable component of human learning [56]. Often in the literature, the
concept of memorization and learning are used interchangeably; in neuropsychology literature, how-
ever, these two are clearly distinguished. More specifically, following neuropsychology literature [57],
we build our terminology based on the following definition of memory and learning:

Learning vs. Memorization:

Memory is a neural update caused by an input, and learning is the process for acquiring
effective and useful memory.

In this work, our goal is to first show that all the elements of a computational sequence model,
including optimizers and neural networks, are associative memory systems that compress their own
context flow. Broadly speaking, associative memory is an operator that maps a set of keys to a set of
values. We follow the general definition of associative memory by Behrouz et al. [58]:
Definition 1 (Associative Memory). Given a set of keys K ⊆ Rdk and values V ⊆ Rdv , associative
memory is an operator M : K → V that maps two sets of keys K and values V . To learn such
mapping from the data, an objective L̃(·; ·) measures the quality of the mapping and M can be
defined as:

M∗ = argmin
M

L̃(M(K);V). (1)

While the operator itself is a memory and the mapping acts as a memorization process (i.e., memoriz-
ing the connections of events in the context), acquiring such effective operator based on the data, is a
learning process. It is notable that, here, keys and values can be any arbitrary events that memory aims
to map them and are not limited to tokens. Later in this section, we will discuss that given a context
flow, keys and values might be tokens, gradients, sub-sequences, etc. Furthermore, while the term
of associative memory is more common in neuroscience and neuropsychology literature, the above
formulation is also closely related to data compression and low-dimensional representation. That is,
one can interpret the optimization process in Equation 1 as the training process of a network M(.)
that aims to compress the mappings into its parameters and so represent them in a lower dimensional
space.

In sequence modeling, where keys and values are input tokens (e.g., tokenized text), the choice
of objective and the optimization process for solving Equation 1 can result in distinct sequence
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modeling architectures (see [59] and [58]) such as global/local softmax attention [27], or other
modern recurrent models [28, 60, 61]. This simple formulation of sequence models provides us with
better understanding of their internal process and also a tool to simply compare their modeling power
based on their objective and optimization process. In the following, using step-by-step examples, we
discuss how this formulation can be applied to all components of a neural architecture (including its
optimization process in pre-training) and in fact, how a model is an integrated system of multi-level,
nested, and or parallel memories, each of which with its own context flow.

A Simple Example of MLP Training. We start with a simple example, in which we aim to train
a 1-layer MLP (parameterized with W ) for task T and on dataset Dtrain = {x1, . . . , x|Dtrain|} by
optimizing the objective L(·; ·) with gradient descent. In this case, the training process is equivalent
to the following optimization problem:

W ∗ = argmin
W

L(W ;Dtrain), (2)

whose optimization by gradient descent results in a weight update rule equivalent to:

Wt+1 = Wt − ηt+1∇Wt
L(Wt;xt+1) (3)

= Wt − ηt+1∇yt+1L(Wt;xt+1)⊗ xt+1, where xt+1 ∼ Dtrain, (4)

where yt+1 = Wxt+1 is the output of the model for input xt+1. Given this formulation, one can
let ut+1 = ∇yt+1L(Wt;xt+1) and reformulate the backpropagation process as the solution to
an optimization problem on finding an optimal associative memory that maps input data points
Dtrain = {xt}|Dtrain|

t=1 to their corresponding ut+1 = ∇yt+1
L(Wt;xt+1). That is, we let M(·) = Wt ·

parametrizes the memory, and use dot-product similarity to measure the quality of Wt’s mapping
between xt+1 and ∇yt+1L(Wt;xt+1):

Wt+1 = argmin
W

⟨Wxt+1, ut+1⟩+
1

2ηt+1
∥W −Wt∥22 (5)

= argmin
W

⟨Wxt,∇yt+1
L(Wt;xt+1)⟩+

1

2ηt+1
∥W −Wt∥22. (6)

In the above formulation, ut+1 = ∇yt+1
L(Wt;xt+1) can be interpreted as a local surprise signal in

representation space that quantifies the mismatch between the current output and the structure the
objective L(·; ·) enforces. Therefore, this formulation translates the training phase of the model as a
process of acquiring effective memory that maps data samples to their Local Surprise Signal (LSS) in
representation space–defined as the mismatch between the current output and the structure enforced
by the objective L(·; ·). Accordingly, in this example, our model has a single gradient flow over the
data samples, which is only active over dataset Dtrain = {x1, . . . , x|Dtrain|} and will be frozen for any
other data samples afterwards (a.k.a inference or test time).

Next, in the above example, we replace the gradient descent algorithm with its enhanced momentum-
based variant, resulting in an update rule of:

Wt+1 = Wt −mt+1, (7)
mt+1 = mt − ηt+1∇Wt

L(Wt;xt+1) = mt − ηt+1∇yt+1
L(Wt;xt+1)⊗ xt+1. (8)

In Equation 8, given the previous state of Equation 7 (at time t), the value of ∇Wt
L(Wt;xt+1) or

similarly ∇yt+1
L(Wt;xt+1) are independent of recurrence in Equation 8 and so can be pre-computed

beforehand. To this end, we let ut+1 = ∇Wt
L(Wt;xt+1), and so Equation 8 can be reformulated as:

Wt+1 = Wt −mt+1, (9)

mt+1 = argmin
m

−⟨m,∇Wt
L(Wt;xt+1)⟩+ ηt+1 ∥m−mt∥22 (10)

= argmin
m

−⟨m xt+1,∇yt+1
L(Wt;xt+1)⟩+ ηt+1 ∥m−mt∥22, (11)

where the optimization problem in Equation 10 is equivalent to on step of gradient descent with
adaptive learning rate of ηt+1. Given these formulation, one can interpret the momentum term
as either: (1) a key-less associative memory that compress the gradients into its parameters, or
(2) an associative memory that learns how to map data points to their corresponding LSS-value.
Interestingly, this formulation reveals that gradient descent with momentum is indeed a two-level

5



optimization process, where the memory is optimized by simple gradient descent algorithm. This
process is closely related to Fast Weight Programs (FWPs) [62], where the weight update process
(i.e., Equation 9) is the slow network that its momentum weight is generated by a fast network (i.e.,
Equation 10).

Concluding the above examples, we observed that the training process of a 1-layer MLP with:
(1) Gradient descent is a 1-level associative memory that learns how to map data points to their
corresponding LSS-value; and (2) Gradient descent with momentum is a 2-level associative memory
(or optimization process) that the inner-level learns to store gradient values into its parameters, and
then the outer-level updates the slow weight (i.e., Wt) with the value of the inner-level memory.
While these are the most simple examples with respect to both architecture and optimizer algorithms,
one might ask if similar conclusion can be made in more complex setups.

An Example of Architectural Decomposition. In the next example, we replace the MLP module
with a linear attention [60]. That is, we aim to train a 1-layer linear attention for task T and on a
sequence of Dtrain = {x1, . . . , x|Dtrain|} by optimizing the objective L with gradient descent. Recalling
the unnormalized linear attention formulation:

kt = xtWk, vt = xtWv, qt = xtWq, (12)

Mt = Mt−1 + vtk
⊤
t , (13)

yt = Mtqt . (14)

As discussed in earlier studies [58, 59], the recurrence in Equation 13 can be reformulated as the
optimization process of a matrix-valued associative memory Mt(·), in which, it aims to compress
the mappings of keys and values into its parameters. In more details, in Definition 1, if we let
L̃(Mt−1;kt,vt) := −⟨Mt−1kt,vt⟩ and aim to optimize the memory with gradient descent, the
memory update rule is: (Note that ∇L̃(Mt−1;kt,vt) = vtk

⊤
t and we let learning rate ηt = 1)

Mt+1 = argmin
M

⟨Mkt+1,vt+1⟩+ ∥M−Mt∥22 with gradient descent, (15)

⇒ Mt+1 = Mt −∇L̃(Mt;kt+1,vt+1) = Mt + vt+1k
⊤
t+1, (16)

which is equivalent to the update rule of an unnormalized linear attention in Equation 13. Also, note
that as we observed in the first example, training a linear layer with gradient descent is a 1-layer
optimization problem of an associative memory (see Equation 3) and so the general training/updating
process of projection layers (i.e., Wk,Wv, and Wq) is itself an optimization process of associative
memory. Accordingly, this setup, i.e., training a linear attention with gradient descent, can be seen as
a two-level optimization process, where the outer-loop (also known as training process) optimizes the
projection layers with gradient descent, while the inner-loop optimizes the inner memory of Mt with
gradient descent.

Note that, as discussed above, here, we have two associative memories, and so each of which
has their own optimization process and gradient flow. That is, in the optimization of outer-level
parameters of Wk,Wv, and Wq there is no gradient with respect to parameter M(·) and so there is
no backpropagation through it. Similarly, in the inner-level, there is no backpropagation through
projection layers and they are considered frozen. Furthermore, it is notable that in this example, the
above formulation is also closely connected to FWPs perspective of linear attentions [63], where
projections are considered slow weights, and memory update in Equation 13 is the fast weight update
rule.

Architectural Decomposition with More Levels. In both above examples, we discussed simple
cases, where they can be translated into 2-level optimization processes, which also coincides with their
FWPs interpretations. In practice, however, we need to use more powerful optimization algorithms to
train the model, and/or use more powerful recurrent update rule for memory. As a simple example,
assume we use gradient descent with momentum to train a linear attention model. In the above
examples, we show that how the linear attention component can be decomposed into two nested
optimization problem. Similarly, here the model can be represented as a 2-level optimization problem,
where (1) the inner level optimizes the memory to compress the context using gradient descent (see
Equation 15), and (2) the outer level optimizes the projection layers with gradient descent with
momentum. Interestingly, from the first example, we know that “gradient descent with momentum”
algorithm itself is indeed a 2-level optimization problem where the momentum term itself is an
associative memory that compress the past gradients into its parameters.
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2.2 Nested Optimization Problems

In the previous section, we provided examples to demonstrate how one can decompose a machine
learning model into a set of nested or multi-level optimization problems. Next, we first aim to present
a formal formulation for nested learning problems and then define Neural Learning Module–an
integrated computational system that learns from data.

As we observed in the previous section, while we decomposed the model into a set of optimization
process, it is still unclear if we can define a hierarchy (or order) over these problems, and uniquely
represent the model in this format. Inspired by the hierarchy of brain waves that indicates the
information processing frequency rate of each part (discussed in Section 1), we use the update rate of
each optimization problem to order the components in multiple levels. To this end, we let the one
update step over one data point to be the unit of time, and define the update frequency rate of each
component as:
Definition 2 (Update Frequency). For any component of A, which can be a parametric component
(e.g., learnable weights or momentum term in gradient descent in momentum) or a non-parametric
component (e.g., attention block), we define its frequency, denoted as fA, as its number of updates
per unit of time.

Given the above update frequency, we can order the components of a machine learning algorithm
based on operator (· ≻ ·). We let A to be faster than B and denote A ≻ B if: (1) fA > fB , or
(2) fA = fB but the computation of the B’s state at time t requires the computation of A’s state

at time t. In this definition, when A ⊁ B and B ⊁ A, we let A
f
= B, which indicates that A and

B has the same frequency update, but their computation is independent of each other (Later, we
provide an example of this cases in AdamW optimizer). Based on the above operator, we sort the
components into an ordered set of “levels”, where (1) components in the same level have the same
frequency update, and (2) the higher the level is, the lower its frequency. Notably, based on the above
definition, each component has its own optimization problem and so context. While we optimize
the component’s inner objective with gradient-based optimizers, the above statement is equivalent to
having exclusive gradient flow for each component in the model. In general case, however, one can
use non-parametric solution (as we later discuss about attention).

Neural Learning Module. Given the above definition of nested learning problems, we define neural
learning module as a new way of representation of machine learning models that shows the model
as an interconnected system of components, each of which with its own gradient flow. Note that,
orthogonal to deep learning, nested learning allows us to define neural learning models with more
levels, resulting in more expressive architecture.

Nested learning allows computational models that are composed of multiple (multi-layer)
levels to learn from and process data with different levels of abstraction and time-scales.

Next, we study optimizers and well-known deep learning architectures from the nested learning
perspective, and provide examples that how NL can help to enhance those components.

2.3 Optimizers as Learning Modules

In this section, we start by understanding how well-known optimizers and their variants are special
instances of nested learning. Recall the gradient descent method with momentum,

Wi+1 = Wi +mi+1

mi+1 = αi+1mi − ηt∇L (Wi;xi) , (17)

where matrix (or vector) mi is the momentum at state i and αi and ηi are adaptive learning and
momentum rates, respectively. Assuming αi+1 = 1, the momentum term can be viewed as the result
of optimizing the following objective with gradient descent:

min
m

⟨m∇L(Wi;xi)
⊤, I⟩. (18)

This interpretation shows that momentum can indeed be viewed as a meta memory module that
learns how to memorize gradients of the objective into its parameters. Building on this intuition, in
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Section C.4 we show that Adam with a small modification is the optimal associative memory for the
models’ gradients. Next, we show that how this perspective can result in designing more expressive
optimizers:

Extension: More Expressive Association. As discussed earlier, momentum is a value-less asso-
ciative memory and so has limited expressive power. To address this issue, following the original
definition of associative memory (i.e., mapping keys to values), we let value parameter vi = Pi and
so the momentum aims to minimize:

min
m

⟨m∇L(Wi;xi)
⊤,Pi⟩, (19)

using gradient descent, resulting in the update rule:

Wi+1 = Wi +mi+1

mi+1 = αi+1mi − ηtPi∇L (Wi;xi) . (20)

This formulation is equivalent to using preconditioning the momentum GD. In fact, preconditioning
means that the momentum term is an associative memory that learns how to compress the mappings
between Pi and the gradient term ∇L(Wi;xi). While any reasonable choice (e.g., random features)
of preconditioning can improve the expressivity of the initial version of GD with momentum per se is
a value-less memory (i.e., mapping all gradients to a single value), the above perspective gives more
intuition about what preconditioning are more useful. That is, the momentum acts as a memory that
aims to map gradients to their corresponding values, and so a function of gradients (e.g., information
about Hessian) can provide the memory with a more meaningful mappings.

Extension: More Expressive Objectives. As discussed by Behrouz et al. [58], optimizing an
inner objective of dot-product similarity results in Hebbian-like update rule, which can cause the
memory to be less effective. A natural extension of this internal objective is to use ℓ2(·) regression
loss (for measuring the corresponding key-value mapping fitness) and minimize the loss func-
tion ∥m∇L(Wi;xi)

⊤ −Pi∥22, resulting in the update rule of:

Wi+1 = Wi +mi+1, (21)

mi+1 =
(
αi+1I−∇L (Wi;xi)

⊤ ∇L (Wi;xi)
)
mi − ηtPi∇L (Wi;xi) , (22)

This update is based on delta-rule [64] and so it allows the memory (momentum) to better manage its
limited capacity and better memorize the series of past gradients.

Extension: More Expressive Memory. As discussed earlier, momentum can be viewed as a meta
memory model that uses a linear layer (i.e., matrix-valued) to compress the past gradient values.
Due to the linear nature of momentum, only linear functions of past gradients can be learned by
its internal objective. To increase the learning capacity of this module, one alternative is to use
alternative powerful persistent learning modules: i.e., replacing a linear matrix-valued memory for
momentum with an MLP. Therefore, momentum as the a memory for the past gradients, has more
capacity to capture the underlying dynamics of the gradients. To this end, we extend the formulation
in Equation 17 as:

Wi+1 = Wi +mi+1 (ui) , and mi+1 = αi+1mi − ηt∇L(2)(mi;ui, I), (23)

where ui = ∇L (Wi;xi) and ∇L(2)(·) is the internal objective of momentum (e.g., dot product
similarity ⟨m(u⊤

i ),1⟩). We refer to this variant as Deep Momentum Gradient Descent (DMGD).

Extension: None Linear Outputs. Building upon the above perspective, in which we see the
momentum as a neural architecture, one common technique to enhance the representation power
of momentum memory module is to use non-linearity on top of its output [28, 65]. That is, we
re-formulate Equation 23 as:

Wi+1 = Wi + σ (mi+1 (ui)) , and mi+1 = αi+1mi − ηt∇L(2)(mi;ui, I), (24)

where σ(·) is an arbitrary non-linearity. As an example, we let σ(·) = Newton-Schulz(·), where
Newton-Schulz(·) is the iterative Newton-Schulz method [66], and m(·) be a linear layer; the
resulted optimizer is equivalent to Muon optimizer [34].
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Going Beyond Simple Backpropagation. As discussed earlier in Section 2.1, the pre-training
process and backpropagation is a form of associative memory, where input data is mapped to the
surprised caused by its predicted output ∇ytL(Wt;xt):

Wt+1 = Wt − ηt+1∇Wt
L(Wt;xt) = Wt − ηt+1∇yt

L(Wt;xt)⊗ xt, where xt ∼ Dtrain, (25)

which from the associative memory perspective is equivalent to one step of gradient descent in
optimization process of:

min
W

⟨Wxt,∇yt
L(Wt;xt)⟩. (26)

As we discussed in Appendix C, the above formulation cause ignoring the dependencies of data
samples like xt. To extend it to a more powerful formulation where it also consider the dependencies
of data points (which is extremely important when we use optimizer in the token space as they are
not independent), we use L2 regression objective with one step of gradient descent as follows:

min
W

∥Wxt −∇ytL(Wt;xt)∥22. (27)

This formulation results in a new variant of gradient descent, which can be simplified as follows:

Wt+1 = Wt

(
I− xtx

⊤
t

)
− ηt+1∇Wt

L(Wt;xt) (28)

= Wt

(
I− xtx

⊤
t

)
− ηt+1∇ytL(Wt;xt)⊗ xt, where xt ∼ Dtrain, (29)

Later, we use this optimizer as the internal optimizer of our HOPE architecture.

3 HOPE: A Self-Referential Learning Module with Continuum Memory

Existing architectural backbones consist of (1) a working memory module (e.g., attention), which is
responsible to actively fuse the information across sequence length, and (2) a feed-forward layer (e.g.,
MLP) that fuse information across features and acts as the persistent memory or knowledge storage
of pre-training phase. From the NL perspective, pre-training is the phase that the most outer level
of the learning module is updated over its limited context flow. Accordingly, in the continual setup,
such pre-training phase is also rarely updated over time, and so its corresponding knowledge storage
needs to rarely be updated over time. Given this intuition, we extend the traditional view-point of
long-term/short-term memory system and suggest a knowledge storage feed-forward for each level
(frequency domain).

Given the definition of frequency, Continuum Memory System (CMS) is formalized as a chain of MLP
blocks MLP(f1)(·), . . . , MLP(fk)(·), each of which associated with a chunk size of C(ℓ) := maxℓ C

(ℓ)

fℓ

such that given input x = {x1, . . . , xT } the output of the chain is calculated as (we disregard
normalizations for the sake of clarity):

yt = MLP(fk)(MLP(fk−1)(· · · MLP(f1)(xt))), (30)

where the parameters of ℓ-th MLP block, i.e., θ(fℓ), are updated every C(ℓ) steps:

θ
(fℓ)
i+1 = θ

(fℓ)
i −

{∑i
t=i−C(ℓ) η

(ℓ)
t f(θ

(fℓ)
t ;xt) if i ≡ 0 (mod C(ℓ)),

0 otherwise.
(31)

In Appendix B.1, we discuss different variants of this formulation, including fully nested MLP layers.
Here η

(ℓ)
t are learning rates corresponds to θ(fℓ), and f(·) is the error component of an arbitrary

optimizer (e.g., ∇L(θ(fℓ)
t ;xt) in gradient descent). The conventional Transformer block [27] is a

special instance of this formulation, where k = 1. It is notable that Equation 31 provides an important
interpretation: parameters θ

(fℓ)
t are responsible for compressing their own context into the their

parameters and so they are a representative of abstract knowledge of their context.

HOPE. We further present a self-referential learning module based on Titans [28] and our variant
of gradient descent in Section B.1. Combining this self-referential sequence model with continuum
memory system results in HOPE architecture.
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Figure 3: A comparison of Hope architectural backbone with Transformers (Normalization and
potential data-dependent components are removed for the sake of clarity).

Table 1: Performance of HOPE and baselines on language modeling and common-sense reasoning
tasks. Hybrid models are marked with ∗.

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ ↑

HOPE (ours) 26.05 29.38 35.40 64.62 40.11 51.19 56.92 28.49 38.33 60.12 46.90

760M params / 30B tokens

Transformer++ 25.21 27.64 35.78 66.92 42.19 51.95 60.38 32.46 39.51 60.37 48.69
RetNet 26.08 24.45 34.51 67.19 41.63 52.09 63.17 32.78 38.36 57.92 48.46
DeltaNet 24.37 24.60 37.06 66.93 41.98 50.65 64.87 31.39 39.88 59.02 48.97
TTT 24.17 23.51 34.74 67.25 43.92 50.99 64.53 33.81 40.16 59.58 47.32
Samba∗ 20.63 22.71 39.72 69.19 47.35 52.01 66.92 33.20 38.98 61.24 51.08
Titans (LMM) 20.04 21.96 37.40 69.28 48.46 52.27 66.31 35.84 40.13 62.76 51.56

HOPE (ours) 20.53 20.47 39.02 70.13 49.21 52.70 66.89 36.05 40.71 63.29 52.26

1.3B params / 100B tokens

Transformer++ 18.53 18.32 42.60 70.02 50.23 53.51 68.83 35.10 40.66 57.09 52.25
RetNet 19.08 17.27 40.52 70.07 49.16 54.14 67.34 33.78 40.78 60.39 52.02
DeltaNet 17.71 16.88 42.46 70.72 50.93 53.35 68.47 35.66 40.22 55.29 52.14
Samba∗ 16.13 13.29 44.94 70.94 53.42 55.56 68.81 36.17 39.96 62.11 54.00
Titans (LMM) 15.60 11.41 49.14 73.09 56.31 59.81 72.43 40.82 42.05 60.97 56.82

HOPE (ours) 15.11 11.63 50.01 73.29 56.84 60.19 72.30 41.24 42.52 61.46 57.23

4 Experiments

For the sake of space, in the main paper, we report the results of the HOPE’s evaluation on language
modeling, and common-sense reasoning, tasks. However, we report an extensive set of results,
including on experiments on optimizers, emergence of in-context learning, continual learning abilities
of HOPE, ablation studies, long-context tasks, etc. in the appendix. Details about the experimental
setups and other used datasets are in Appendix G

Language Modeling and Common-sense Reasoning. We follow recent sequence modeling stud-
ies [28, 67, 68] and report the results of HOPE and baselines with size of 340M, 760M, and 1.3B on
language modeling and also commonsense reasoning downstream tasks. These results are reported
in Table 1. HOPE demonstrate a very good perfomance across all the scales and benchmark tasks,
outperforming both Transformers and recent modern recurrent neural networks, including Gated
DeltaNet and Titans. Comparing HOPE to Titans and Gated DeltaNet, we can see that dynamically
changing the key, value, and query projections based on the context as well a deep memory module
can result in a model with lower perplexity and higher accuracy in benchmark results.
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