Build an LLM Frem Scratrch

all images Prom the boek by Sebmstinn Raschka

the general outline of building an the from Scratch

Fine-tunes the pretrained
LLM to create a
classification model

Classifier

STAGE 1 STAGE 2 STAGE 3
Dataset with class labels
1) Data : - 7) Load
preparation ?Qﬁ:ﬁf:m ar?l:i:_elzmre i T;ez)lnlng e?/)amg?izL prefrained 8) Fine-tunil ‘
& sampling P weights) Fine-tuning

l !

Building an LLM

l
)—»[Foundation model

J

Implements the data sampling and
understand the basic mechanism

Pretrains the LLM on unlabeled
data to obtain a foundation

Personal assistant

9) Fine-tuningj

Instruction dataset

model for further fine-tuning

the "large” tn LLM refers to the
massive size of the models and the
huge corpus of data used for them.

Deep neural network for
parsing and ing
human-like text

>
. T Large language models
Nk earming M e ']
N

GenAl involves the use of
___ deep neural networks to
create new content, such
as text, images, o various
forms of media

neural networks consisting

of many layers Deep learning | Algorithms that learn rules

automatically from data

__ Systems with

Artificial intelligence By "
human-like intelligence

e nexys-word Predictisn bagy(

S a
-;[)o(m of Se\f—su‘oevw'SC) ,earn{v\ﬂ-_mt,
label i B next word /b°|(€ur\~

Video embedding model Video embedding vector

e o} — ﬁ——

Audio embedding model

s Jd — %——

Unlabeled Text embedding model

inputdata'\
]
3B — ﬁ —— [lemzEh
.
B

Embedding model converts raw
input into a vector representation

Audio embedding vector

Text embedding vector

of the input

embeédij is 1 Gnvert dara inke namerical Eensors

— Convev+ ,aurje text ko
= OSign idS £9 eock ke

— add Specia] & waltnewn o ken$

Vector representation

Fine-tunes the pretrained
LLM to create a personal
assistant or chat model

— & ged Cheice for emueJA€~J is wara2vec
_ 30‘3 em\wU"'j must Caprwe He Coniex+

— LLMS can pran Hear ovn embeaa‘.‘:J as paf
of fhir braining , thd qllews gam to coptare

>
o
w\l‘"\:ﬁs and CONCLPYS based oNi tosk an

dotr Q4 hand -

Res9y Data 4 Embedding

w ovas

Output text
Postprocessing steps

GPT-like

decoder-only
transformer

Token embeddings: (1 [T (111 (1] [
Token IDs:

O

This section covers the T

concept of splitting
Input text This is an example.

text into tokens

_ Qalling tokenizer.encode (text) on sample text

. : B embc%ij lyec is of shape

Vocay % dim which is essentally a

Sample text Tokenized sample text Token IDs

The brown dog

e a9 | —= [—] — [o] -] [Ookup t&b\(k‘;{&y e} ?0(" cach

the swift fox .
Vocabutary Lolcen. Feentiont
—_—

idgo []

01 (it
Token IDs Tokenized sample text Sample text |, 6 'L (
The b d

HEOE — [— |t : 3

1 the swift fox .

vooabulary !
" Calling tokenizer.decode (ids) on token IDs ! 6 r (]

Some Common gpecial tokens:

(8057 marks the "“O"""‘:j of o sealuev\calbexr whD Po S't;O'\‘l Em bS ?

tEO.‘:] " " enainj of & " 1

[PADY prdding token for training on bosthes with \ears P embedding layer reiurns & detecministic

valwe for each id, regaciless & ixg positon:

Tre Attenion mechanism 13 also @ncsr(c
Some tskenizess \\e BFE G gnode unknown t; posiions E‘j’b\l\ snuffle A sequen<e

Word) iho - wGine special folwms, by b\'aﬂﬁ ond Peud +o i doesnt make o difFevene:

of yorions sizes.

P Jhion i L
He word éov*'\ t© tokenipsble o OtS- —wWe N\J'EC{— positt® \/\-cvrmw—ow)

Text sample with U‘\'L‘ pos QM\OQ(’“‘“& 1S the Same
unknown wggds 8"\“108 as bD\(@f\ Mb@&‘r\@

Unknown words are

2:5:::1:‘3:::%:‘.:&::’::‘> /{/{\}\[s odded b e den amb.
Tokens: | "AK" W’ i ier"

INpur Smboedding —
Token IDs: (33901 86 Il 343 Il 86 I 220 = INpwr & 15 —

POy Qmb 1 teKan emb
How the || Prodrsey inP~t /Ourput Ponfs

Input embeddings: [1 1] O] I 0]
Sample text
W
(the heart offthe)city stood the old library, a relic from a bygone era. ts | bogtional embeddings: [T 1 [T 1 (1 [T 1 [
: . . B +
stonhe walls bore\the marks of time, and ivy clung tightly to its facade ..." .
‘ Token embeddings: [1] [117] 1]
x =\tensor ([[("the", "heart", "of") 1, T
Tenso.r./_/' ["the" , neityn, "stood", "the" 1, Token IDs: [40134 2052
com,a"“"g ["old" "library", ",", "an 1,
the inputs I)
Tokenized txt O
y = tensor([[| "the", "heart", "of", “the”) 1, T
Tensor / L teiey, 'stoodv, 'thet, told" 1, Input text: This is an example
containing ["library", ", van, “relic"], . .
the targets [. 11)

Sequem—ial Crikeﬁa of o 8“&
Trans Pos mers Pos Embeddio

So Wiy don't we use 5¢1uw+ia\ Tronsfor mers _w\\q\w, wa,’s €0t coen (O oSHioN

thot con caprre the Posikon of qokens snd _ Sigrana beetwdin bwid time sieps be Consistent
ke @ENS avd LSTAS . dont requie any acress Sentenay of &fferent- lengths

— Shou'd Ae bownded to generalizl +o longer

, Semppncty Wi no efforrs

/. Prallelism s . Seduanrial Processing : AberSE

Pevalle| p/agex;'\ g mach P«r)"’@" . ”\,a b
) ot [h?/\\ me
A NOF o v, out Beatwve! by alowing twe e J J
el 4o procesy all +okens v paralel i+ " Arention 3 all U Ned
awher s+ Sinusoidal

Positional embeltings?

Can |garm fho (@OHONSWP and Consert
2, C,D-\P'e‘l\{"\j ﬂ‘l’min'\:\j D',?-f\‘c‘_v\\'rj v learaia

QA\s0 alewr pas;lriu n} UO‘\U‘ O~P|‘C°\~€- “ai(\.'yj -l-(;‘ Sn L\"'K't) ’ ;g 1= 2% _ Sm((:vz)y‘
{ - =~ ws "
4. 'Evisﬁna appro achey Work well ! t co5S (w(t)) ¢ j= 2.1t Sin(We ©)
N Sweme u‘) oy woul) be €00 mMw ch A .
Weodochke ' '(Vo= P Wrs Sin(we,)
A-Dooe e (We, .€))|

Output
Probabilities) = .

Add & Norm

Add & Norm

Add & Norm Multi-Head e
Feed Attention “©
Forward Nx
073
Nx —L Add & Norm 5 3 o r3 s 160 120 -100
d & Norm e Deptn)
Multi-Head Multi-Head . T‘E Cown C&
Attention Attention wk.j 18 PE Summe d ‘Bj (o*“h 4»\0“'\ " ﬁd ’
L%) LN)

!) Concot wonld memn highty dims in inpar
Positional Positional 8¢ P v 1e x| R Y
Enceding D & Encoding e l’e s U - meve Cph'ﬂ \j N raee ’

Input Output vqindg -
[Embedding I I Embedding dha CpV\VQ_J j
nputs Outputs lowev Ji"‘%&;"\ hase h.'jhe" quuv\c:j f‘*‘-"‘*“*"iﬂ
(shifted right)

more rapidiy: So e dokend SOC §y side hovt

mof€ differencs in PE varher +hom tokems ﬁrof“”_
s helps mode| Copra@ locsl dependshcicd whik th

eppesite (ot FVZ‘]N'\‘C) ia \\Dhqf diwensisns Coprures

. i L,
o - |
Qws more 32!\((6.‘ ® (,w_,o,tj(Xpendencies.

5@ Ethan &

i'm not sure why | haven't noticed this until now, is it not an issue that
frequencies in sinusoidal positional embeddings get basically clipped
passed a certain dimension?

should we be using slower changing frequencies in scaling up to larger
dimensions?

Q hesam €

i think this could be looked at in two ways:

- the authors considered positional embeddings as a piece of additional
information that would help the model optimize. a token positioned at
different parts of a sequence would preserve the values in the higher
dimensions. This probably helps the model recognize the token much
easier and is most likely to converge faster. but the positional
information isn't lost either as the lower dimensions clearly show the
positional changes by having a much higher frequency. so you have the
best of the two worlds. if all the dimensions had the same frequency, it
could probably make the training less stable as the same token
positioned differently had more different embeddings. you can look at it
like keeping the balance between holding the token embedding and the
position embedding without one overshadowing the other.

- another way to look at the frequency of the positional embeddings,
which is a bit tricky to get your head around, is that less frequency (down
to no change at all) shows information on long-range dependencies and
more general information. on the other hand, high frequency means that
two tokens far apart could be closer in positional embedding than two
tokens side by side. so this allows the model to capture the long-range
dependencies of tokens AS WELL as the short-range enabled by the
lower dimensions.

%ention N 2017, researchery fowny shar RANs ar

hot fequir@} oy profSiet transfucmers in

[]
"
. . w .
RChoMISM e is =t oon e
. w The “self” in self-attention
'n - e P tk ' In self-attention, the “self” refers to the mechanism’s ability to compute attention

weights by relating different positions within a single input sequence. It assesses and

learns the relationships and dependencies between various parts of the input itself,

such as words in a sentence or pixels in an image.
A type of self-attention used in LLMs 2 e

that allows a model to consider only This is in contrast to traditional attention mechanisms, where the focus is on the rela-

feiil":"r‘:i‘:ifgos;:'t}f;z:gz:e :::‘l"i::::::sfl':_'i"';;":em:::sali';:d“ tionships between elements of two different sequences, such as in sequence-to-
broader idea during the text generation sequence models where the attention might be between an input sequence and an
\ | output sequence, such as the example depicted in figure 3.5.
N
[;Lf‘g{:;ﬂ;‘:‘ J_.Lz) Self-attention J_— [3) Causal anannon}——{ . J A Sele - apention , we‘j‘m— S aSS‘lj ney
/ \‘ to tokens in o Seq\\er\clr rathar than
Self-attention with trainable An extension of self-attention and -
weights that forms the basis of causal attention that enables the . - outpPnu _S,Qc1 S
the mechanism used in LLMs model to simultaneously attend th e m:ou + 'O

to information from different

representation subspaces S; ™ P l e A t{ zﬂ t'- oa

.) ' .
o rakWional auernatve fo adention day €0 uS .
here iy a Simple owtine of asention -

@ntoder — decodey RENS. "
k <
The translated English sentence 0[“'/3 - a"» Phﬁ“c" V/_,’ Nﬂfr':l, zix — mw “n
Docoder = index=1 OHer inpurs w3

oupus (o) — (8~ ()~ ()

Midden states of a ? f } Q “Your” “journey” “starts” “step”
neural network Hidden states. (D) —~ (D) — (D) ~ (D x® x? XL XD
Encoder] — T ol o
on-n-on-a» Attention weights
} }) t [\ Amemory cll (nidden state)
"~ memorizing entire input
4

e AN

Multiply each input vector I This is the second context vector because
Seman mputsspince o ranslee enton g oo T i respetto e stond ot vt
; . R L in the previous steps.
the problem wieh Hs pppmack s e fhe Yeco s Lhe Conbest NeCor he@ i o "medificd vertivn® of
oS no acas) +o the iNPur Sequence and relieS .‘nrur €mb€ddw:7- 0’«% like inf embtddw:y is o
. afies version of Joken ¥ ,0'1-1"*""/ embedding .
o:() sn e hidlen Stare , Can lead +o yme &Yt

foss of conreXt in ‘f‘j Sequences . Gesd D"_\) e'/ Lm’\ ‘ble Atte“ 'BO“

Short Saﬁ‘*U\UA' arertien 15 ia Fqu ue@h\—eé-s“'“ Of the

in 2014 Bandanau attention was introduced inpur embeddiags .

which m'ooluﬁed the decoder-encoder RNN <0 Now we imogine each futen has o keg—vake
at decoding steps there was access to tnwput prduced by multiplyng learnatle key @ vaime parans
Sequence. each input token also had a weight. by He impne gmbEdings

“Your”

“journey” “step”
We are focusing on X x@ XM
generating the second 5
output token. AN . o
D+ En- @D AR W, W)\ AN
t t t t
n s QD -+ D+ D ~ @D B bl
(1) (1) 2) L (2) ,(2) L (T) (T)
| key k value v q k ¥ k V!
i —| — B —
- - an - a» -a» g qoo o
[} 4 [“_ token, the model has a way oo @, q 8] @2r
¢ " ;
nputs «» - to access to all input tokens.) J
* . ! ! The unscaled attention score is computed Since we want to compute the context vector
i as a dot product between the query and for the second input token, the query is derived
I the key vectors. from that second input token.

| The dotted line width is proportional
to how important the input token is
for the respective output token.

L]
“Your” . » . .
o | Attention(a . .k,V)
i Q K-r)
- oX (™)\
W] N\ W,/ w| . W\ = Softmax (25
w
oho
kD e g @ e 10 g asention is veighied-Sum of V, OWich
\—1 2@4{ o Yaear krangPormaxion of inpwt embesld"'\gi-
uel
query ¢ PRE wzz q %T X
W rectv S
Attention . w 1] Whj \7-0-*6 not ehbeéa":ﬂs e QC*J
ight a, 22 o
weigl a,lT l appl:’;,\j W7 oh e'-hEdd\"\aS allovs e madel
03
TN e to Boews on different dimensions of embs For

" attention weight and then summing o PPevemt voswes. This ?\e‘;b\'\\'ea provijes more

them to obtain the context vector
. S
nov thae whale rocesy |ooks 50, notice she wmpwt Pavoms to TUNQOWY learn Complex patrern

embeddinys are wor wied dn‘rect/j for Centext Vetor:
“This s s+l we\J"‘*e& —gum over +he vale vectors, bue Tho i mala pushes @ and < ua\ue;g ;c\-;,-

Fa wegm—s ore Yho c‘@keas CThis 1S Ghe attentrion P+ emPhosis on ‘,L\en‘s\n\. Pavts o
whith wself is leamed -

Q.kK'

wv querJ Kg vawes ¥ e dot proguct s o monsire. <

wev}ng

Simi\ar v'(;j
Querq i the token we owe Paww:ﬂ ‘ y
on £ Wngerstany wWrt Hhe ojher folens. by Cempuring the do; Prd:C-; berween
a veciar ond eac! ew vecto
Joor like o SQL query - vao > 4 .
Hhe OH ASsesses how relevant esch ey
Keg s ke o datnbase ey b sowch ant (am associares valwe) 18 hﬂ—M_Qua.rJ»

revieval © £ Content.
AY
Vel 1S the ockun\ Centent ueve lodhy Re. , 4 P Lo
it push Q a
represents the actual content or representation of the input items. Once the model d.‘sn * ' P K
determines which keys (and thus which parts of the input) are most relevant to the t, C° aV ev e 4

query (the current focus item), it retrieves the corresponding values.
what is the relation
betwean @ K ?

[L .
- i: gjl.‘obz:c: :”;:‘:::CQ‘SQ:MM chege it o vallé poiny 5 bup Wy W Wy
'\J ave indzpev\devﬂ- modvic .
Yeo! anl i+ Shou'd- while hey e independent to preserve
o 1S Fokens talking wilk f(q(\eill'fj ' they ae 3n+<rcanne«;+aé.‘
an . +he wofd "moaeu

one (,Jy Lo Lhle of atenxi

fady orher ond sharg i for mat

/;.\\ . . 4—
" " ok machine |€a(ﬂ‘:\j model mast be veqy Jnf-ee(er\

@0’_‘ ” a4 Pp\ohswz\‘ .

_—

4

lhe got prodnct berween K and &

rodaees an implicit f’e\aHo'\s\n'\durm@ Jhe dor produch o b w0 vectors

treanin 3 .

The re\m-.'ov\s\n'\‘o 'S emergenl- from the
ophmizonion yather than lmposed .

So becouse Wg and Wy Fointly deiermine
the atention s, khey ok m\-erc\ependem—\.

Q and K Sewe dx‘?fuem+ coles *

cepresents what wRYR seeking or the
Context 0F the Cwfrent token.

K represents features of all yoken in vhe
SQQ\LU\CL-

& FANTASTIC)

while Q, IK o N owe independent,
H“E‘j"‘ﬂl"\ Waad —in-han} 4o add oartention ¥
o s2quence-

Their orchestfaror (s the 9od almighiy

\pock-propagotion

Scaled Dot-Product Attention

t
MatMul
f A
SoftMax
4
Mask (opt.)
4

Scale

1
MatMul

t 1

Q KV

why scale QJ,[Z:.?

1§ the
Sam of +hei ,ow’rulv'Se elemenis . So +he
ma:’)n"h«&c increases U e ¢ OmenSion-

vey lage valaes in QK produc axren
peuls in the Sofrmax 7C¢*~'~“"j e P“bleﬂ
pﬁ \,an;sh"/\ﬂ 3(0\6"644’50

SA@ the magaitud @ Oli-\‘Nl dor protuch
Scaes win Na, , Qividing 1y 3, entueas
e vaviancz iy A » \ending © ameTR
.S*“b\L Hu,im‘l‘tj. 3

P
wk J‘ ler’s assume two randem variables <
3 L) Sampled o o nofml dist with meano one
Vartana 1.

Q];K}MN(D’i) az\:q ”
+he dot pred is: S=Q.K = ¢ i Kg ‘
sine @, K ofe independent "' have zere mean: £ EUT=0

Els1= S el] = Z E&e(ki]=
the varionee of S st
Nor(8) = E[s‘l_(EtSJ)'L: E[Sz} —, calcwlare e[—
dw

—->E[s?] = E[(Z‘&: 3)‘J = E[Z.: (&%) 4 n_z_ﬁ_a;k; 05 %;)
Sine & % ki o indeperdens acrosy offecent doenavas »
ELQ(K;Qj K\53= E'[Q"KBGCQSKJ‘]=] -?'r '\-.‘_j
4herefor:

ELs¥] - 7 E[(aik)?)
crlthar © .

E((Q;k)*FE Q)%e(d-
(\/ar(@,‘\ +(E[&:J)") . (Vkr (K'.) +[E[|<;3)7') — (»1_)(1) -1

Qo
€ls?) = &1 =3«

var (33 = BE[8*] =3k
So e S\-cmdo(d 62\'\‘0\‘%;”_—0‘—5 Ay
Oy = Jvar(sy =)8x

Standard deviatiow vepresets Scale of increwe

W "l‘“‘"’"ﬁé how M\.;.k 'Y dot onl\& yalney
Sp#tb\a ot fla"‘ e meansS:

CN‘-S“‘J Q. K, Valae
Attention oo mmdkens)

v.'_.ei (b; nume +okens . num— headS, heod — 0"“’")

. — A. .
0‘-(‘(a Mmas ked a+tenition bronspoic (b, NUm-Nenads | Nam—iokens , hext- drm)

hides -ﬁb\—‘”ﬁ tok@ns 4o sieulate

- ’ . Lvams'ooseL 2]
. . S olHNn_SGTe = ouents @ Keys
nfevence wme. A dot proguct Fov gah nead

- -
: 5 :)
5 £ £ s 2 3 5 S £ s 23 —> otn—Scafe . masked —FN—(maslg_wnel, -
£ 3 5 % 5 3 £ 3 3§ 3 5 %
Your [0.19/[0.16/(0.16/0.15(0.17 [0.15 Your [1.0 mm:z'::‘::lf:“s Sa-'ﬁ-l-ww“’\ & di~port
“ »” ‘.
journey [0.20(/0.160.16 [j0.14 0.16[0.14 journey |0.550.44 :le'(::e Your . 1,73
re @ Ualwes) - bans (T
starts [0.20/[0.160.16 [|0.14[0.16/[0.14 starts |0.38{[0.30/0.31 Oontext_vec = (aln_ sart
. ? .
with |0.18[0.16/(0.16 (|0.15|[0.16|[0.15 with 0.27/|0.24|0.24|[0.23 (b » NUmMm— ‘skens , nwm-h«&ués) heht) ‘0”“)
.
one [0.18]|0.16{/0.16|0.15 0.16 (0.1 one [0.21]|0.190.1910.18[0.19 vied wr
& (b, nun-ikens, doo D)
step |0.79)/0.160.16] 015 0.16] 0.15 step [0.19][0.16{|0.16/0.15|0.16[0.15

odel ?ﬂm

ths s done (3) muliip [ging o magk where

Attentior}reight for input tokens wer H s Qf“ * ck
corresponding to “step” and “Your”
GPT m

. D)
upper Hiangulor volnes are 82t 4o Dt
° . [
o+ g - Se iF hoy no efecron —
In Seftm e =0 I
- oty
.[J\L ‘I\DIMK“ZM'*O"\ SHP' meli:snoken(:.Etf:ry")wiu'no(b(t

contained in the output. The LLM returns one 768-
‘ Eomo
—— for eac imensional
. : ov t
D(OP o“_“’- Caw bz o\rpl‘bb +o Q:H—en{- o SCOvR

input token embedding.
Outputs:
o b s e win T, b applyin)

D“P"’“’ Yo A HON Sre.y 1§ oV

For the smallest GPT-2 model,

GRTmods each embedding vector consists
__ of 768 dimensions (only the first

2 dimensions are shown).

Conve Hionn \. Token embeddings: [Z4][z4]... [zg

 We tokenize the input
1 S text and convert it into

° token embeddings.
a tten ~t ‘ O n Toonzod o

mu lﬂ‘f’ le h “) [3 do +Hha Of¢'fA-(—f amS and Figure 4.4 A big-picture overview showing how the input data is tokenized, embedded, and fed to the GPT model.

Note that in our DummyGPTClass coded earlier, the token embedding is handled inside the GPT model. In LLMs,

Au,l'l’i - hC&d ok 03

the embedded input token dimension typically matches the output dimension. The output embeddings here

are e"na lb Concatted. represent the context vectors (see chapter 3).

orm 9 ¢ o ke
h prackicts Eo make s Cade opimizad. L@u/\l IS oppled belor o‘m A?y 1
we wsx a simle V)& Wy Wy 1o ony Tronsforre v il befor. pu Fioal (2

—_—
N orce- e \evnable Parevs te Change
palﬁm +he muaH operaion Scole & swh of the cormalized owjput

z — E[z]

v /Var[z] + € Y +@

we resnage +he maFmees i he
Process -

The other submodale in GPT is Gell,
Wich s o vatiank of e RolV with
mole Smoer fvowmsition O Y=o

A1o+hev 'o.loulm opi—""\ S :>vl|'6LV

GELU activation function ReLU activation function

30 30
25 25
_ 20 _20
315 S1s
810 N
0s 05
0o 00
=3 -2 -1 o 1 2 3 = =2 -1 o 1 2 3
x x

Figure 4.8 The output of the GELU and ReLU plots using matplotlib. The x-axis shows the function
inputs and the y-axis shows the function outputs.

wh GeW?
1. RelN 38 vey gimple: Bwr ot s

S\V\WI’ and nonrflel(t'ble‘ GQLV has o SMA

fransiHion g+ =0

LY

2. Gel as neja";“ volues Por wée unhbe

RelU which ounowts €fe.

Al ths makd GelV o better opion 24
deeper networks gud more Cempltt ones.

Feecl Fo rword

1. Lineavr \ager
2. Gew
3. Lineov loper

Outputs

The second linear layer shrinks the
" outputs by a factor of 4, so that they
match the original input dimensions.

The inputs are projected into
a four-times larger space via
the first linear layer.

nputs O O O

“The Qxpansion and shen Contraction allows €°f
Qpterasion of me@ GompleX répresentarion gpucR:

Residwal Connéciion

oruﬁind['y f'vl”o.(eb n Vision e mivgaiR Ahs

Vonishing Jradient (3ne

. o trawm.)
SMA\ICII mAk'wJ N Q""\‘!' “Ju“ W‘ + ro

Residwal Crmnectinas provid® & gherier and
i v

alfernayive Path for +he 3"‘6'2"* te §o J

Skipfl'a on@ or wmofe (pmections, hence

5\4,.". unne,c_h'o‘n, T‘-cj presewe f\ou 0f 3'0\6"”\?

grad P{vjf{ﬂ““) gRin

Deep neural network

Layer 5
Gradient: 0.0050
Layer 4
Gradient: 0.0013
Layer 3
Gradient: 0.0007
Layer 2
Gradient: 0.0001
Layer 1
Gradient: 0.0002

(

\

In very deep networks, the

gradient values in early layers
become vanishingly small

Se\f, wdtention

c
|8

GELU

GELU

"

'

r

Linear

GELU

5 [}
5|—>8 m
g c

Deep neural network with
shortcut connections

Layer 5 GELU
Gradient: 1.32

5

(€

Layer 4
Gradient: 0.26

Layer 3
Gradient: 0.32

Layer 2
Gradient: 0.20

Shortcut connection
__~ adds input values to

~Layer1 the outputs of layer 1
Gradient: 0.22

The shortcut connections
help with maintaining
relatively large gradient
values even in early layers

Selpa.ttencion VS. Linear

loolts orthe input dota in reladion to othes

\ ol\
Ports \uh:ﬁ ar iy \J

Lireor 19y

\
Outputs have the same

er |ooks o ke data .‘r\d{v‘d*ﬁl\lj,

—r(aﬂspo! wmer

RBreclc

form and
as the inputs.

The transformer
block

e

The input tokens to be

embedded

[fo.
[o.
[o.
[o.

Feed forward
LayerNorm 2

Masked multi-head

LayerNorm 1

GELU activation

®

A view into the “feed

attention forward” block

— Shortcut connection

.4604], This tensor represents an
.75981, embedded text sample
, 0.5963], 47 that serves as input to the

transformer block.
.5833]]

How GPT gererotes eext:

Adam optimizers are a popular choice for training deep neural networks. However, in

z \ .d o our training loop, we opt for the AdamW optimizer. AdamW is a variant of Adam that
l OJ\+‘S = m°6 () improves the weight decay approach, which aims to minimize model complexity and

prevent overfitting by penalizing larger weights. This adjustment allows AdamW to

(D ’ A_S - ‘O |'+ S [L, =V, :3 éﬂ ﬁ g ® " achieve more ef'fective_ rggularization and better generalization; thus, AdamW is fre-
3‘ -) \ g+ quently used in the training of LLMs.

tempefature Scaling

We replace argmax with o probatalist'c approach

(bakh , nuwm-1akens, embosie] +oken

¥
[barch, emb—Size]

(s - SoBmax(l09i45) o
pre 5= S (j to Select next 4oken based own +he prebabiy -

Q\ijd\'ﬁ (rgle“)

oargmox ——> mulfinomial
W% = Yovch . caq-("d ", i r- nb(f)

The predicted tok N - une
The initial tokens (context) 1D is appended to the \e J\-\é / = tewm pe{aﬂ-

provided as input to the LLM context for the next round.
))

Iteration / D - _ n e A
Y Predict '/ “z 'l.emP/ 1 T o a‘a (7
1 (15496, 11, 314, 716] —— | [257] . ven "
s epesention 1101 am temp (1L~ &len vroe plaky JU
temp 71 waiform Hisrributien &=
2 [15496, 11, 314, 716, 257] — | [2746]

&
for illustration purposes YS?Q’
Hello B I am a model
top-p
3 [15496, 11, 314, 716, 257, 2746]— | [3492] .
welle . T am & motel | ready Seled top p logils qnd St H‘LMM‘D"
S0 nSUnSbIe g paivny w ek electd

The output tokens
«— after six iterations
6 [15496, ..., 3492, 284, 1037, 13] (max_new_tokens=6)

Hello, I am a model ready to help.

?eriainira on yalabeled
datra

Condert S+miny
te e.-bzd&iv\gs

f{-imiza_r Such & Ada.m\/‘f , which we,

|f u,y‘ij on ©
histerical doda, s best IS sare thar O vell o5 the
1

] maodel . .
f:\: ,;:-t :-he model5 “’fjha'

tegits§

torch.save ({
"model_state_dict": model.state_dict(),
"optimizer_ state_dict": optimizer.state_dict(),

"model and_optimizer.pth"

mo max , d(co“,
Afrut' ¥o ;hPM"’

LO$5 FUNLTION

we cerpare tha owipW- [prebabiliie)
qjc-il\j = 04\Mv~<} rrath, push w2 rhre_
v‘-\'jkk frpbnb-‘l‘y-

WL o W2 o aueraYe (OS5 - Enkrrpy .

The last token is the only

dovnload maodel '-J&‘jh"'s 9 imHalre
Jounload datoset X seinp Daroser Clag
Reptace +hr clessi@icaron head

(outputs
{

Linear output layer
Final LayerNorm

)

Feed forward
LayerNorm 2

)

Masked multihead
attention

LayerNorm 1

1 50,257

The original linear output layer mapped 768
hidden units to 50,257 units (the number of
tokens in the vocabulary).

N

1 768

We replace the original linear output layer above
I_ with a layer that maps from 768 hidden units to
only 2 units, where the 2 units represent the two

Positional embedding layer
Token embedding layer

et iS no nged ke P\'ﬂl- twre gl lgyerr oS e

enrlier \ayers eaptare e Somantic meamyys ©

ge LD

4

Tokens masked out via

the causal attention mask. ?0(d&b\?"@ Hiv
Ping—tuning w sould swfhice +o

fite . v oR Pre \o3t qelan
vy it coptwy L Vol --*.U‘\]t

Let’s consider the last token output using a concrete example:

print ("Last output token:", outputs(:, -1, :])

N A

J

e s 0

ni
classes (“spam" and "not spam").)

One way to format
the data entry to
train the LLM)

“H\b/e are Ns U vessal nes +s Wov
ﬂLAVD epochs w Pae-tune: |+ coud help b wse
the P+ aﬂ Frava Joss & Volidation las) - "f . mode
overfiis, |ess @pechs She\d de Bertes. and %

e pmin £ Jul kess d@Cvese tosyerher; wnere epochs
- e helpPal-

Listing 6.12 Using the model to classify new texts

def classify_review(
text, model, tokenizer, device, max_length-None,
pad_token_id=50256) :

del . 1
model . eval () Prepares inputs

input_ids = tokenizer.encode (text) to the model

supported_context_length = model.pos_emb.weight .shape [1]

Truncates sequences if
they are too long

input_ids = input_ids[:min(
max_length, supported context length
3l

input_ids += [pad_token_id] * (max_length - len(input_ids))

Adds batch
dimension
with torch.no_grad():

logits = model (input_tensor) [z, -1, :]
predicted_label = torch.argmax(logits, dim=-1).item()

Pads sequences
to the longest
sequence

Models inference
ithout gradient
tracking
return "spam" if predicted label == 1 else "not spam"
Logits of the last output token Returns the classified result

icattom iwforgnce examp'\c

input_tensor = torch.tensor(
input_ids, device-device
) .unsqueeze (0)

norhir tofe o Fine-taning 3 instencion B

wherg YW vesulng medetl gonecares HOX

An entry in the
instruction dataset
(

.

{
"instruction”: "Identify the correct spelling of the following word.",
“input": "Ocassion",
“"output": "The correct spelling is 'Occasion.'®

3o

Apply Alpaca prompt style template. Apply Phi-3 prompt style template.

<|user|>
se Identify the correct spelling of the
following word: 'Ocassion'

Below is an instruction that
describes a task. Write a respon:
that appropriately completes the
request.

<|assistant|>
Instruction: The correct spelling is 'Occasion'.
Tdentify the correct spelling of the
Zollowing word.

Tnput:
Ocassion

token with an attention
score to all other tokens.

Response:

The values of the tensor corresponding to the last token are

The correct spelling is 'Occasion'

Last output token: tensor([[-3.5983, 3.9902]])

Figure 7.4 Comparison of prompt styles for instruction fine-tuning in LLMs. The Alpaca style (left) uses a
structured format with defined sections for instruction, input, and response, while the Phi-3 style (right) employs
a simpler format with designated <|user|>and <|assistant | > tokens.

inputs_1 = [0, 1, 2, 3, 4] {'instruction':

inputs_2 = [5, 6] 14 [P i !

inputs 3 - [7, 8, 9] I:.nput: ' "rhe car 1§ very fast.', . . .

batch = (output': 'The car is as fast as lightning.',
inputs_1, 'model response': 'The car is as fast as a bullet.'}

inputs_2,

)
print (custom_collate_draft_1 (batch))

[L7INVR'S

The resulting batch looks like the following:

tensor ([[o, 1, 2, 3, 41,
[5, 6, 50256, 50256, 50256],
[7, 8, 9, 50256, 5025611)

W 9 ear own collate Runcgion B bMC\"‘j
sk like {h3

Ve we £paf —tokens = moke o\l batch \'npvuj
e 3ol giae

Target1 [1, 2, 3, 4,/50256! 1 — [1, 2, 3, 4,150256 1

— A
Target2 [6, 50256, 50256, 50256, 50256‘] — 1 6, 50256, |-100, -100, -100 1
/
Target3 [8, 9,!50256,| 50256, 50256 | 1 — [8, 9, '50256, ‘ -100, 100 1
L J
S

J

— :

r (
We don’t modify the first We replace all but the first
instance of the end-of-text instance of the end-of-text
(padding) token. A (padding) token with -100.

this 1§ S¢ A Pad halen goes T
oflecr +ho oS5 Punchon -
(e faple Ej PITOfCw crosy Ent "@)

Coers o Wt fueget Mask out the instruction
4o € yhen calculating the loss.
Input text: Target text: ¢

Below is an instruction that describes a task. W
response that appropriately completes the reques

rite a
€.

#44 Tnstruction:

Rewrite the following sentence using passive voice.

#44 Taput:
The team achieved great results.

o Lean achieved great results

Response:

Response:
Great results were achieved by the team.<|endoftext|>

Great results were achieved by the team.

l Tokenize l Tokenize
(21206, 318, 201, 12088, 326, .., 131 100, 100, -100, -100, -100, .., 13, 50256]
_ A
(!
The token IDs corresponding The instruction tokens
to the input text are replaced by -100.

thd 5 am oper oran DL resewlcn Lh'ﬁ“
Vot htngk.‘:j cewld be benelicial

Chﬂokf 7 y) }'\S’V\ACH o~ ‘?f"(-— "“n\"\ﬂ s
bl o oot implementetions that o o b

resd on the book.

Most importantly, model evaluation is not as straightforward as it is for completion
imply calculate the percentage of correct spam/non-spam
fication’s accuracy. In practice, instruction-fine-tuned L.

fine-tuning, where w
labels to obtain the class
such as chatbots are evaluated via multiple approaches:

Short-answer and multiple-choice benchmarks, such as Measuring Massive Mul-
titask Language Understanding (MMLU; https://arxiv.org/abs/2009.03300),
which test the general knowledge of a model.

ence comparison to other LLMs, such as LMSYS chatbot arena

Human prefer
(https://arena.lmsys.org).

Automated conversational benchmarks, where another LLM like GPT-4 is
used to evaluate the responses, such as AlpacaEval (https://tatsu-lab.github.io/
alpaca_eval/).

inputs 3 Lo avaluate 4 fiﬂe-*‘“‘d wode\, gacw o dataset needy +o be

'Rewrite the sentence using a simile.',

el

,.J‘ wto ca.d
APP‘ x Qgﬁro\‘s ourorati e Jitferendaion

J?G(C L\ 2rying ysin Comfmw\—‘bwa\ jrath'

The partial derivative of
the intermediate result z
with respect to the bias unit

The partial derivative of the
loss with respect to its input

du

PyTorch implements a PyTorch includes utilities to T noz da oL
tensor (array) library for differentiate computations . ob Fa 96 y
efficient computing. automatically wy b i e '

2 Automatic
differentiation engine Xy

N
3B CEEED SY o FETE) o) o (e
~_ P

Tensor library -

\:\ /:/ L We can obtain the partial derivative of
ou the loss with respect to the trainable

3 Deep learning PyTorch’s deep learning A % ds BI weight .by Ehaining the individual partial
“_ utilities make use of its S TS derivative in the graph.
ow, Owy du' dz da

tensor library and automati
differentiation engine. oL 0z da OL Similar to above, we can compute the

; B o a partial derivative of the trainable
tersers ace a generaiize encp+t o PO\)

derivative by applying the chain rule.
co\\a Chipn o‘c volwh o ﬁ (anle N the omp taation 3”‘\0"‘ bailds o directe)

sfaf)l'\ 1N Mea bmgwtowwk +o ComPni

An example of a 3D s 3 ck pro atere -
A scalar is justa vector that consists A matrix with 3 rows the R)rv‘ g pay, ow b Prepad
single number. of 3 entries and 4 columns

\ ;0 -~ A note on model gut puts

3 3512
2 H [1 7 2 3] " ?j’);fcl'\ , iv5 best to ourpn
- 22 the IoJa'U l’vuw the mode| rathev
Scalar Vector Matrix thon Sof-l-mm e
0D tensor 1D tensor 2D tensor W)\\3 P

4. \o9'ts contain more de"“i[ed ;“Q’(mm"’io,\
61-0'& s ","”P‘l than OSO?(—MMK which is & vovealizel version of

H\Qm—

H“"‘PJ arrunyS 2 PJTMU-\ denyon ave

Sndor, but fendors Gome b addiHonal Q. the Softmax . _ .
instacbiliy] For) pxponenvions (L hyis

R Sowly ovedlow

?md«‘o—\ Comn COWE numercal

Pew«ei mpertony m Ceep leaming -
ValuR 3§ oo high gy Awe |\

/oS ¥ ap\‘s oL the Sau~e. or wnder Bel)
" ‘P Torch § Nt - 6X . PoT;v ch \oss Bancaons pke. Gorors EV\HD)O\")Loj) appy
’ Softmay :nwmab bar in o Stable ey

AS\?) ‘E‘f infm{'\lﬂl we Canje+ A~ a@mﬂ\‘k
Prom Nt ithowt= tha meed for sobomon.

doflaul tenyer +ype

PJ—W”C«\’\ ws@y O fvick 4o colenlate the—
%,ﬁ_ﬁ“,\ Q,E-{)"CW"\PJ L l's caled [?j——sum\- exw ek
The next batch is taken

\,J\f\"c'/\ B Data loading without multiple workers Data loading with multple workers g Fep o b o batches

the data loader already
For each epoch: For each epoch:
For each batch: For each batch:

/" queued up in the
(4
A bottleneck

Continue with
the next batch

(
(S

Sh;\el'(a'—\o@{\'&: \Ooﬂ"s — \Qj{‘\'s. mayn L\

/' background.
¥~ model waits

for the next
batch to be
loaded

This womtd NP +he logts bwr Iceep VS
fﬂ&%\k{j voluey Hn- Sav—e O

With multiple workers
2, -¢C fieration enabled, the data loader
% can prepare the next data
{ batches in the background.
Model predicts the labels, ! grou
the loss is computed, and the

Z\'r -C model weights are updated.
Z e pone or Pos nam-vorkery Can crue bettleaecks -

Soﬁ-mar\<2,.') = 50:&""‘ am(2,-)=

for batch_idx, (features, labels) in enumerate(train_loader):
= model (features)

logits
o' h +& Mbe ' loss - F.cross_entropy(logits, labels) | Sets the gradients from the previous
round to 0 to prevent unintended

optimizer.zero_grad() . gradient accumulation

loss.backward () < Computes
optimizer.step () N The optimizer uses the gradients the gradients
to update the model parameters. of the loss
#4# LOGGING given the
print (f"Epoch: {epoch+1:03d}/{num_epochs:03d}" model
£ | Batch {batch_idx:03d}/{len(train_loader):03d}" parameters
£" | Train Loss: {loss:.2f}")

model.eval ()
Insert optional model evaluation code

mooel gval
disable Some {;ra;ai\nj-s\oec:
'S“"A oy hJef—nan\& d{a'oov\}.

fic con f«'j s

Each Dataloader
create a custom Instantiate object handles
dataset shuffling,

ss that defines ‘ assembling the
¥ individual data Training dataset Training dataloader data molﬁis into
ords are loaded. batches, and more

Instantiate

-

—
Using the Dataset Test dataset Test dataloader
class, we create 4

different Dataset {
objects. Each Dataset object is
fed to a data loader.

dhese ang dhe basic Quncsions £
A Cwiror Derader class

onl Daruser S Qm& > WL we Dd&q\aam
£ loed daral it battAd> |, ShaPfle it , ond

(s0d PQ(A“ &l wg v levs-

train_loader = DataLoader (
dataset=train_ds,
batch size=2,
shufer:True, how! Man) s“b'“.‘: asjes v we
num_workers=0, _—7 ?" dosa Toady ‘9
drop_last=True | a3t incomplete barch

) = §5 dropped

