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i'm not sure why | haven't noticed this until now, is it not an issue that
frequencies in sinusoidal positional embeddings get basically clipped
passed a certain dimension?

should we be using slower changing frequencies in scaling up to larger
dimensions?

Q hesam €

i think this could be looked at in two ways:

- the authors considered positional embeddings as a piece of additional
information that would help the model optimize. a token positioned at
different parts of a sequence would preserve the values in the higher
dimensions. This probably helps the model recognize the token much
easier and is most likely to converge faster. but the positional
information isn't lost either as the lower dimensions clearly show the
positional changes by having a much higher frequency. so you have the
best of the two worlds. if all the dimensions had the same frequency, it
could probably make the training less stable as the same token
positioned differently had more different embeddings. you can look at it
like keeping the balance between holding the token embedding and the
position embedding without one overshadowing the other.

- another way to look at the frequency of the positional embeddings,
which is a bit tricky to get your head around, is that less frequency (down
to no change at all) shows information on long-range dependencies and
more general information. on the other hand, high frequency means that
two tokens far apart could be closer in positional embedding than two
tokens side by side. so this allows the model to capture the long-range
dependencies of tokens AS WELL as the short-range enabled by the
lower dimensions.
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Figure 4.8 The output of the GELU and ReLU plots using matplotlib. The x-axis shows the function
inputs and the y-axis shows the function outputs.
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~Layer1 the outputs of layer 1
Gradient: 0.22

The shortcut connections
help with maintaining
relatively large gradient
values even in early layers

Selpa.ttencion VS. Linear

loolts orthe input dota in reladion to othes

\ ol\
Ports \uh:ﬁ ar iy \J

Lireor 19y

\
Outputs have the same

er |ooks o ke data .‘r\d{v‘d*ﬁl\lj,

—r(aﬂspo! wmer

RBreclc

form and
as the inputs.

The transformer
block

e

The input tokens to be

embedded

[fo.
[o.
[o.
[o.

Feed forward
LayerNorm 2

Masked multi-head

LayerNorm 1

GELU activation

®

A view into the “feed

attention forward” block

— Shortcut connection

.4604], This tensor represents an
.75981, embedded text sample
, 0.5963], 47 that serves as input to the

transformer block.
.5833]]



How GPT gererotes eext:

Adam optimizers are a popular choice for training deep neural networks. However, in

z \ .d o our training loop, we opt for the AdamW optimizer. AdamW is a variant of Adam that
l OJ\+‘S = m°6 ( ) improves the weight decay approach, which aims to minimize model complexity and

prevent overfitting by penalizing larger weights. This adjustment allows AdamW to

(D ’ A_S - ‘O |'+ S [ L, =V, :3 éﬂ ﬁ g ® " achieve more ef'fective_ rggularization and better generalization; thus, AdamW is fre-
3‘ - ) \ g+ quently used in the training of LLMs.

tempefature Scaling

We replace argmax with o probatalist'c approach

(bakh , nuwm-1akens, embosie] +oken

¥
[barch, emb—Size]

(s - SoBmax(l09i45) o
pre 5= S ( j to Select next 4oken based own +he prebabiy -

Q\ijd\'ﬁ ( rgle“)

oargmox ——> mulfinomial
W% = Yovch . caq-("d ", i r- nb(f)

The predicted tok N - une
The initial tokens (context) 1D is appended to the \e J\-\é / = tewm pe{aﬂ-

provided as input to the LLM context for the next round.
) )

Iteration / D - _ n e A
Y Predict '/ “z 'l.emP/ 1 T o a‘a (7
1 (15496, 11, 314, 716] —— | [257] . ven "
s epesention 1101 am temp (1L~ &len vroe plaky JU
temp 71 waiform Hisrributien &=
2 [15496, 11, 314, 716, 257] — | [2746]

&
for illustration purposes YS?Q’
Hello B I am a model
top-p
3 [15496, 11, 314, 716, 257, 2746]— | [3492] .
welle . T am & motel | ready Seled top p logils  qnd St H‘LMM‘D"
S0 nSUnSbIe g paivny w ek electd

The output tokens
«— after six iterations
6 [15496, ..., 3492, 284, 1037, 13] (max_new_tokens=6)

Hello, I am a model ready to help.

?eriainira on yalabeled
datra

Condert S+miny
te e.-bzd&iv\gs

f{-imiza_r Such & Ada.m\/‘f , which we,

# |f u,y‘ij on ©
histerical doda, s best IS sare thar O vell o5 the
1

] maodel . .
f:\: ,;:-t :-he model5 “’fjha'

tegits§

torch.save ({
"model_state_dict": model.state_dict(),
"optimizer_ state_dict": optimizer.state_dict(),

"model and_optimizer.pth"

mo max , d(co“,
Afrut' ¥o ;hPM"’

LO$5 FUNLTION

we cerpare tha owipW- [prebabiliie)
qjc-il\j = 04\Mv~<} rrath, push w2 rhre_
v‘-\'jkk frpbnb-‘l‘y-
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The last token is the only

dovnload maodel '-J&‘jh"'s 9 imHalre
Jounload datoset X seinp Daroser Clag
Reptace +hr clessi@icaron head

( outputs
{

Linear output layer
Final LayerNorm

)

Feed forward
LayerNorm 2

)

Masked multihead
attention

LayerNorm 1

1 50,257

The original linear output layer mapped 768
hidden units to 50,257 units (the number of
tokens in the vocabulary).

N

1 768

We replace the original linear output layer above
I\_ with a layer that maps from 768 hidden units to
only 2 units, where the 2 units represent the two

Positional embedding layer
Token embedding layer

et iS no nged ke P\'ﬂl- twre gl lgyerr oS e

enrlier \ayers eaptare e Somantic meamyys  ©

ge LD

4

Tokens masked out via

the causal attention mask. ?0( d&b\?"@ Hiv
Ping—tuning w sould swfhice +o

fite . v oR Pre \o3t qelan
vy it coptwy L Vol --*.U‘\]t

Let’s consider the last token output using a concrete example:

print ("Last output token:", outputs(:, -1, :])

N A

J

e s 0

ni
classes (“spam" and "not spam"). )

One way to format
the data entry to
train the LLM )

“H\b/e are Ns U vessal nes +s Wov
ﬂLAVD epochs w Pae-tune: |+ coud help b wse
the P+ aﬂ Frava Joss & Volidation las) - "f . mode
overfiis, |ess @pechs She\d de Bertes. and %

e pmin £ Jul kess d@Cvese tosyerher; wnere epochs
- e helpPal-

Listing 6.12 Using the model to classify new texts

def classify_review(
text, model, tokenizer, device, max_length-None,
pad_token_id=50256) :

del . 1
model . eval () Prepares inputs

input_ids = tokenizer.encode (text) to the model

supported_context_length = model.pos_emb.weight .shape [1]

Truncates sequences if
they are too long

input_ids = input_ids[:min(
max_length, supported context length
3l

input_ids += [pad_token_id] * (max_length - len(input_ids))

Adds batch
dimension
with torch.no_grad():

logits = model (input_tensor) [z, -1, :]
predicted_label = torch.argmax(logits, dim=-1).item()

Pads sequences
to the longest
sequence

Models inference
ithout gradient
tracking
return "spam" if predicted label == 1 else "not spam"
Logits of the last output token Returns the classified result

icattom iwforgnce  examp'\c

input_tensor = torch.tensor(
input_ids, device-device
) .unsqueeze (0)

norhir tofe o Fine-taning 3 instencion B

wherg YW vesulng medetl gonecares HOX

An entry in the
instruction dataset
(

.

{
"instruction”: "Identify the correct spelling of the following word.",
“input": "Ocassion",
“"output": "The correct spelling is 'Occasion.'®

3o

Apply Alpaca prompt style template. Apply Phi-3 prompt style template.

<|user|>
se Identify the correct spelling of the
following word: 'Ocassion'

Below is an instruction that
describes a task. Write a respon:
that appropriately completes the
request.

<|assistant|>
### Instruction: The correct spelling is 'Occasion'.
Tdentify the correct spelling of the
Zollowing word.

### Tnput:
Ocassion

token with an attention
score to all other tokens.

### Response:

The values of the tensor corresponding to the last token are

The correct spelling is 'Occasion'

Last output token: tensor([[-3.5983, 3.9902]])

Figure 7.4 Comparison of prompt styles for instruction fine-tuning in LLMs. The Alpaca style (left) uses a
structured format with defined sections for instruction, input, and response, while the Phi-3 style (right) employs
a simpler format with designated <|user|>and <|assistant | > tokens.



inputs_1 = [0, 1, 2, 3, 4] {'instruction':

inputs_2 = [5, 6] 14 [P i !

inputs 3 - [7, 8, 9] I:.nput: ' "rhe car 1§ very fast.', . . .

batch = ( output': 'The car is as fast as lightning.',
inputs_1, 'model response': 'The car is as fast as a bullet.'}

inputs_2,

)
print (custom_collate_draft_1 (batch))

[L7INVR'S

The resulting batch looks like the following:

tensor ([[ o, 1, 2, 3, 41,
[ 5, 6, 50256, 50256, 50256],
[ 7, 8, 9, 50256, 5025611)

W 9 ear own collate Runcgion B bMC\"‘j
sk like {h3

Ve we £paf —tokens = moke o\l batch \'npvuj
e 3ol giae

Target1 [ 1, 2, 3, 4,/50256! 1 — [ 1, 2, 3, 4,150256 1

— A
Target2 [ 6, 50256, 50256, 50256, 50256‘ ] — 1 6, 50256, |-100, -100, -100 1
/
Target3 [ 8, 9,!50256,| 50256, 50256 | 1 — [ 8, 9, '50256, ‘ -100, 100 1
L J
S

J

— :

r (
We don’t modify the first We replace all but the first
instance of the end-of-text instance of the end-of-text
(padding) token. A (padding) token with -100.

this 1§ S¢ A Pad halen goes T
oflecr +ho oS5 Punchon -
(e faple Ej PITOfCw crosy Ent "@)

Coers o Wt fueget Mask out the instruction
4o € yhen calculating the loss.
Input text: Target text: ¢

Below is an instruction that describes a task. W
response that appropriately completes the reques

rite a
€.

#44 Tnstruction:

Rewrite the following sentence using passive voice.

#44 Taput:
The team achieved great results.

o Lean achieved great results

### Response:

### Response:
Great results were achieved by the team.<|endoftext|>

Great results were achieved by the team.

l Tokenize l Tokenize
(21206, 318, 201, 12088, 326, .., 131 100, 100, -100, -100, -100, .., 13, 50256]
_ A
( !
The token IDs corresponding The instruction tokens
to the input text are replaced by -100.

thd 5 am oper oran DL resewlcn Lh'ﬁ“
Vot htngk.‘:j cewld be benelicial

Chﬂokf 7 y) }'\S’V\ACH o~ ‘?f"(-— "“n\"\ﬂ s
bl o oot implementetions that o o b

resd on the book.

Most importantly, model evaluation is not as straightforward as it is for completion
imply calculate the percentage of correct spam/non-spam
fication’s accuracy. In practice, instruction-fine-tuned L.

fine-tuning, where w
labels to obtain the class
such as chatbots are evaluated via multiple approaches:

Short-answer and multiple-choice benchmarks, such as Measuring Massive Mul-
titask Language Understanding (MMLU; https://arxiv.org/abs/2009.03300),
which test the general knowledge of a model.

ence comparison to other LLMs, such as LMSYS chatbot arena

Human prefer
(https://arena.lmsys.org).

Automated conversational benchmarks, where another LLM like GPT-4 is
used to evaluate the responses, such as AlpacaEval (https://tatsu-lab.github.io/
alpaca_eval/).

inputs 3 Lo avaluate 4 fiﬂe-*‘“‘d wode\, gacw o dataset needy +o be

'Rewrite the sentence using a simile.',
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The partial derivative of
the intermediate result z
with respect to the bias unit

The partial derivative of the
loss with respect to its input

du

PyTorch implements a PyTorch includes utilities to T noz da oL
tensor (array) library for differentiate computations . ob Fa 96 y
efficient computing. automatically wy b i e '

2 Automatic
differentiation engine Xy

N
3B CEEED SY o FETE) o ) o (e
~_ P

Tensor library -

\:\ /:/ L We can obtain the partial derivative of
ou the loss with respect to the trainable

3 Deep learning PyTorch’s deep learning A % ds BI weight .by Ehaining the individual partial
“\_ utilities make use of its S TS derivative in the graph.
ow, Owy  du' dz  da

tensor library and automati
differentiation engine. oL 0z da OL Similar to above, we can compute the

; B o a partial derivative of the trainable
tersers ace a generaiize encp+t o PO\ )

derivative by applying the chain rule.
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PJ—W”C«\’\ ws@y O fvick 4o colenlate the—
%,ﬁ_ﬁ“,\ Q,E-{)"CW"\PJ L l's caled [?j——sum\- exw ek
The next batch is taken

\,J\f\"c'/\ B Data loading without multiple workers Data loading with multple workers g Fep o b o batches

the data loader already
For each epoch: For each epoch:
For each batch: For each batch:

/" queued up in the
(4
A bottleneck

Continue with
the next batch

(
(S

Sh;\el'(a'—\o@{\'&: \Ooﬂ"s — \Qj{‘\'s. mayn L\

/' background.
¥~ model waits

for the next
batch to be
loaded

This womtd NP +he logts bwr Iceep VS
fﬂ&%\k{j voluey Hn- Sav—e O

With multiple workers
2, -¢C fieration enabled, the data loader
% can prepare the next data
{ batches in the background.
Model predicts the labels, ! grou
the loss is computed, and the

Z\'r -C model weights are updated.
Z e pone or Pos nam-vorkery Can crue bettleaecks -

Soﬁ-mar\<2,.') = 50:&""‘ am(2,- )=

for batch_idx, (features, labels) in enumerate(train_loader):
= model (features)

logits
o' h +& Mbe ' loss - F.cross_entropy(logits, labels) | Sets the gradients from the previous
round to 0 to prevent unintended

optimizer.zero_grad() . gradient accumulation

loss.backward () < Computes
optimizer.step () N The optimizer uses the gradients the gradients
to update the model parameters. of the loss
#4# LOGGING given the
print (f"Epoch: {epoch+1:03d}/{num_epochs:03d}" model
£ | Batch {batch_idx:03d}/{len(train_loader):03d}" parameters
£" | Train Loss: {loss:.2f}")

model.eval ()
# Insert optional model evaluation code

mooel gval
disable Some {;ra;ai\nj-s\oec:
'S“"A oy hJef—nan\& d{a'oov\}.

fic con f«'j s

Each Dataloader
create a custom Instantiate object handles
dataset shuffling,

ss that defines ‘ assembling the
¥ individual data Training dataset Training dataloader data molﬁis into
ords are loaded. batches, and more

Instantiate

-

—
Using the Dataset Test dataset Test dataloader
class, we create 4

different Dataset {
objects. Each Dataset object is
fed to a data loader.

dhese ang dhe basic Quncsions £
A Cwiror Derader class

onl Daruser S Qm& > WL we Dd&q\aam
£ loed daral it battAd> |, ShaPfle it , ond

(s0d PQ(A“ &l wg v levs-

train_loader = DataLoader (
dataset=train_ds,
batch size=2,
shufer:True, how! Man) s“b'“.‘: asjes v we
num_workers=0, _—7 ?" dosa Toady ‘9
drop_last=True | a3t incomplete barch

) = §5 dropped






